On the nature of the generating series of walks in the quarter plane

被引:33
作者
Dreyfus, Thomas [1 ,2 ]
Hardouin, Charlotte [3 ]
Roques, Julien [4 ]
Singer, Michael F. [5 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[4] Univ Grenoble Alpes, CNRS UMR 5582, Inst Fourier, 100 Rue Maths,BP 74, F-38402 St Martin Dheres, France
[5] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
基金
欧洲研究理事会;
关键词
SMALL STEPS;
D O I
10.1007/s00222-018-0787-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce a new approach, relying on the Galois theory of difference equations, to study the nature of the generating series of walks in the quarter plane. Using this approach, we are not only able to recover many of the recent results about these series, but also to go beyond them. For instance, we give for the first time hypertranscendency results, i.e., we prove that certain of these generating series do not satisfy any nontrivial nonlinear algebraic differential equation with rational function coefficients.
引用
收藏
页码:139 / 203
页数:65
相关论文
共 24 条
[1]  
[Anonymous], 2010, SPRINGER MONOGRAPHS
[2]  
[Anonymous], 2005, Grad. Texts in Math.
[3]  
Bernardi O., 2016, P FPSAC 2015 DISCR M
[4]   THE COMPLETE GENERATING FUNCTION FOR GESSEL WALKS IS ALGEBRAIC [J].
Bostan, Alin ;
Kauers, Manuel ;
van Hoeij, Mark .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) :3063-3078
[5]   Non-D-finite excursions in the quarter plane [J].
Boston, Alin ;
Raschel, Kilian ;
Salvy, Bruno .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 121 :45-63
[6]  
Bousquet-Mélou M, 2010, CONTEMP MATH, V520, P1
[7]   Residues and telescopers for bivariate rational functions [J].
Chen, Shaoshi ;
Singer, Michael F. .
ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (02) :111-133
[8]  
Dreyfus T., J EUR MATH SOC
[9]  
Fayolle G., 2010, MARKOV PROCESS RELAT, V16, P485
[10]  
Fayolle G., APPL MATH