Particle tracking velocimetry of the flow field around a collapsing cavitation bubble

被引:54
作者
Kroeninger, Dennis [1 ]
Koehler, Karsten [1 ]
Kurz, Thomas [1 ]
Lauterborn, Werner [1 ]
机构
[1] Univ Gottingen, Drittes Phys Inst, D-37077 Gottingen, Germany
关键词
LASER-GENERATED CAVITY; VAPOR CAVITY; FINAL STAGE; DYNAMICS; EROSION; NEIGHBORHOOD; BOUNDARIES;
D O I
10.1007/s00348-009-0743-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The velocity field in the vicinity of a laser-generated cavitation bubble in water is investigated by means of particle tracking velocimetry (PTV). Two situations are explored: a bubble collapsing spherically and a bubble collapsing aspherically near a rigid wall. In the first case, the accuracy of the PTV method is assessed by comparing the experimental data with the flow field around the bubble as obtained from numerical simulations of the radial bubble dynamics. The numerical results are matched to the experimental radius-time curve extracted from high-speed photographs by tuning the model parameters. Trajectories of tracer particles are calculated and used to model the experimental process of the PTV measurement. For the second case of a bubble collapsing near a rigid wall, both the bubble shape and the velocity distribution in the fluid around the bubble are measured for different standoff parameters gamma at several instants in time. The results for gamma > 1 are compared with the corresponding results of a boundary-integral simulation. For both cases, good agreement between simulation and experiment is found.
引用
收藏
页码:395 / 408
页数:14
相关论文
共 43 条
[1]   COLLAPSE OF CAVITATION BUBBLES AND PRESSURES THEREBY PRODUCED AGAINST SOLID BOUNDARIES [J].
BENJAMIN, TB ;
ELLIS, AT .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 260 (1110) :221-&
[2]   A NUMERICAL INVESTIGATION OF NONSPHERICAL REBOUNDING BUBBLES [J].
BEST, JP ;
KUCERA, A .
JOURNAL OF FLUID MECHANICS, 1992, 245 :137-154
[3]   THE FORMATION OF TOROIDAL BUBBLES UPON THE COLLAPSE OF TRANSIENT CAVITIES [J].
BEST, JP .
JOURNAL OF FLUID MECHANICS, 1993, 251 :79-107
[4]  
BLAKE JR, 1987, ANNU REV FLUID MECH, V19, P99, DOI 10.1146/annurev.fl.19.010187.000531
[5]   TRANSIENT CAVITIES NEAR BOUNDARIES .1. RIGID BOUNDARY [J].
BLAKE, JR ;
TAIB, BB ;
DOHERTY, G .
JOURNAL OF FLUID MECHANICS, 1986, 170 :479-497
[6]   GROWTH AND COLLAPSE OF A VAPOR CAVITY NEAR A FREE-SURFACE [J].
BLAKE, JR ;
GIBSON, DC .
JOURNAL OF FLUID MECHANICS, 1981, 111 (OCT) :123-140
[7]   Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV [J].
Bown, M. R. ;
MacInnes, J. M. ;
Allen, R. W. K. ;
Zimmerman, W. B. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (08) :2175-2185
[8]   The final stage of the collapse of a cavitation bubble close to a rigid boundary [J].
Brujan, EA ;
Keen, GS ;
Vogel, A ;
Blake, JR .
PHYSICS OF FLUIDS, 2002, 14 (01) :85-92
[9]   Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus [J].
Brujan, EA ;
Nahen, K ;
Schmidt, P ;
Vogel, A .
JOURNAL OF FLUID MECHANICS, 2001, 433 :283-314
[10]  
Buevich Y.A., 1966, Fluid Dynamics, V1, P119, DOI DOI 10.1007/BF01022298