Some families of infinite series summable by means of fractional calculus

被引:3
作者
Nishimoto, K
Chen, IC
Tu, ST
机构
[1] Desartes Press Co, JFC, Inst Appl Math, Koriyama, Fukushima, Japan
[2] Chung Yuan Christian Univ, Dept Math, Chungli 32023, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2002年 / 6卷 / 04期
关键词
fractional calculus; infinite series; infinite sums;
D O I
10.11650/twjm/1500407471
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a Five-volume work published recently, K. Nishimoto [1] has presented a systematic account of the theory and applications of fractional calculus in a number of areas (such as ordinary and partial differential equations, special functions. and summation of series). In 2001, K. Nishimoto, D.-K. Chyan, S.-D. Lin and S.-T. Tu [11] derived the following interesting families of infinite series via fractional calculus, Sigma(k=2)(infinity) (-c)k/k(k - 1) (kz - c)/(z - c)(k-1) = c(2) (/-c/z - c/ < 1). The object of the present paper is to extend the above families of infinite series to more general closed form relations. Various numerical results are also provided.
引用
收藏
页码:465 / 474
页数:10
相关论文
共 10 条
[1]   A CERTAIN FAMILY OF INFINITE SERIES ASSOCIATED WITH DIGAMMA FUNCTIONS [J].
ALSAQABI, BN ;
KALLA, SL ;
SRIVASTAVA, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 159 (02) :361-372
[2]  
[Anonymous], 1984, Fractional Calculus
[3]  
Choi J, 1996, COMMUN KOREAN MATH S, V11, P139
[4]   FRACTIONAL CALCULUS AND THE SUMS OF CERTAIN FAMILIES OF INFINITE SERIES [J].
DEDURAN, JA ;
KALLA, SL ;
SRIVASTAVA, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 190 (03) :738-754
[5]  
NISHIMOTO K, 1993, J FRAC CALC, V4, P1
[6]  
NISHIMOTO K, 2001, J FRACT CALC, V20, P91
[7]  
Nishimoto K, 1989, J COLL ENG NIHON U S, V30, P97
[8]  
NISHIMOTO K, 1991, J COLL ENG NIHON S B, V32, P15
[9]  
TU ST, 1994, J FRACTIONAL CALCULU, V5, P35
[10]   A certain class of infinite sums associated with Digamma functions [J].
Wu, TC ;
Leu, SH ;
Tu, ST ;
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 105 (01) :1-9