Facile One-Pot Synthesis of Highly Stable Graphene-Ag0 Hybrid Nanostructures with Enhanced Optical Properties

被引:5
作者
Maiti, Rishi [1 ]
Sinha, Tridib K. [1 ]
Bhattacharya, Sayantan [1 ]
Datta, Prasanta K. [1 ]
Ray, Samit K. [1 ,2 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Phys, Kharagpur 721302, W Bengal, India
[2] SN Bose Natl Ctr Basic Sci, Kolkata 700106, India
关键词
SILVER NANOPARTICLES; WORK FUNCTION; EXFOLIATION; GRAPHITE; PLASMONICS; FERROCENE; PHOTONICS;
D O I
10.1021/acs.jpcc.7b04059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a facile one-pot approach to synthesize graphene Ag-0 hybrid plasmonic nanostructures exhibiting superior optical properties. The Ag nanoparticles (NPs) (average particle size approximate to 25 nm) are found to be highly stabilized within the graphene matrix probably due to the favorable d-pi interaction among the vacant d-orbitals of Ag-0 and the pi-relectrons cloud of graphene moiety. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) have been performed to characterize the hybrid nanostructures. The synergistic effect of plasmonic Ag and graphene in the hybrid nanostructures results enhanced Raman and photoluminescence (PL) in the visible wavelength (similar to 520 nm). The nonlinear absorption (NLA) property in the femtosecond regime has been studied for this hybrid nanostructure. It is also observed that the two-photon absorption (TPA) coefficient of this hybrid increases from 0.0127 to 0.0155 cm/GW when the pulse energy is increased from 77 to 170 GW/cm(2). The study demonstrates enhanced optical response in the graphene- metal nanocomposite, which appears attractive for applications in graphene-based advanced photonic devices.
引用
收藏
页码:21591 / 21599
页数:9
相关论文
共 58 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[2]   Organometallic Complexes of Graphene: Toward Atomic Spintronics Using a Graphene Web [J].
Avdoshenko, Stas M. ;
Ioffe, Ilya N. ;
Cuniberti, Gianaurelio ;
Dunsch, Lothar ;
Popov, Alexey A. .
ACS NANO, 2011, 5 (12) :9939-9949
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers [J].
Bao, Qiaoliang ;
Zhang, Han ;
Wang, Yu ;
Ni, Zhenhua ;
Yan, Yongli ;
Shen, Ze Xiang ;
Loh, Kian Ping ;
Tang, Ding Yuan .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (19) :3077-3083
[5]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[6]   Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction [J].
Bhattachraya, S. ;
Maiti, R. ;
Das, A. C. ;
Saha, S. ;
Mondal, S. ;
Ray, S. K. ;
Bhaktha, S. N. B. ;
Datta, P. K. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (01)
[7]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[8]  
Briggs D., 1984, AUGER XRAY PHOTOELEC
[9]   An overview of graphene in energy production and storage applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4873-4885
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162