Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source

被引:49
作者
Billeh, Yazan N. [1 ]
Liu, Mengyang [2 ]
Buma, Takashi [2 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 18期
关键词
IN-VIVO; RESOLUTION; PULSES;
D O I
10.1364/OE.18.018519
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photoacoustic microscopy (PAM) provides high resolution images with excellent image contrast based on optical absorption. The compact size and high repetition rate of pulsed microchip lasers make them attractive sources for PAM. However, their fixed wavelength output precludes their use in spectroscopic PAM. We are developing a tunable optical source based on a microchip laser that is suitable for spectroscopic PAM. Pulses from a 6.6 kHz repetition rate Q-switched Nd:YAG microchip laser are sent through a photonic crystal fiber with a zero dispersion wavelength at 1040 nm. The highly nonlinear optical propagation produces a supercontinuum spectrum spanning 500 - 1300 nm. A tunable band pass filter selects the desired wavelength band from the supercontinuum. Our PAM system employs optical focusing and a 25 MHz spherically focused detection transducer. En-face imaging experiments were performed at seven different wavelengths from 575 to 875 nm. A simple discriminant analysis of the multiwavelength photoacoustic data produces images that clearly distinguish the different absorbing regions of ink phantoms. These results suggest the potential of this compact tunable source for spectroscopic photoacoustic microscopy. (C) 2010 Optical Society of America
引用
收藏
页码:18519 / 18524
页数:6
相关论文
共 19 条
  • [1] Allen T.J., 2009, P SPIE, V7177, p71770A
  • [2] [Anonymous], 1988, Applied Multivariate Statistical Analysis
  • [3] COX BT, 2009, P SPIE, V7177
  • [4] Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping
    Dudley, JM
    Provino, L
    Grossard, N
    Maillotte, H
    Windeler, RS
    Eggleton, BJ
    Coen, S
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (04) : 765 - 771
  • [5] Combined photoacoustic and ultrasound biomicroscopy
    Harrison, Tyler
    Ranasinghesagara, Janaka C.
    Lu, Huihong
    Mathewson, Kory
    Walsh, Andrew
    Zemp, Roger J.
    [J]. OPTICS EXPRESS, 2009, 17 (24): : 22041 - 22046
  • [6] Noninvasive total hemoglobin measurement
    Jeon, KJ
    Kim, SJ
    Park, KK
    Kim, JW
    Yoon, G
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2002, 7 (01) : 45 - 50
  • [7] Photoacoustic imaging of early inflammatory response using gold nanorods
    Kim, Kang
    Huang, Sheng-Wen
    Ashkenazi, Shai
    O'Donnell, Matthew
    Agarwal, Ashish
    Kotov, Nicholas A.
    Denny, Michael F.
    Kaplan, Mariana J.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (22)
  • [8] Photoacoustic imaging of multiple targets using gold nanorods
    Li, Pai-Chi
    Wei, Chen-Wei
    Liao, Chao-Kang
    Chen, Cheng-Dah
    Pao, Kuei-Chen
    Wang, Churng-Ren Chris
    Wu, Ya-Na
    Shieh, Dar-Bin
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2007, 54 (08) : 1642 - 1647
  • [9] Development of a synchronous fluorescence imaging system and data analysis methods
    Liu, Quan
    Chen, Kui
    Martin, Matthew
    Wintenberg, Alan
    Lenarduzzi, Roberto
    Panjehpour, Masoud
    Overholt, Bergein F.
    Vo-Dinh, Tuan
    [J]. OPTICS EXPRESS, 2007, 15 (20) : 12583 - 12594
  • [10] Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries
    Maslov, Konstantin
    Zhang, Hao F.
    Hu, Song
    Wang, Lihong V.
    [J]. OPTICS LETTERS, 2008, 33 (09) : 929 - 931