Entanglement in Lifshitz-type quantum field theories

被引:62
作者
Mozaffar, M. Reza Mohammadi [1 ]
Mollabashi, Ali [1 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Phys, Tehran, Iran
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2017年 / 07期
关键词
Space-Time Symmetries; Field Theories in Lower Dimensions; Lattice Quantum Field Theory; Nonperturbative Effects; ENTROPY;
D O I
10.1007/JHEP07(2017)120
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study different aspects of quantum entanglement and its measures, including entanglement entropy in the vacuum state of a certain Lifshitz free scalar theory. We present simple intuitive arguments based on "non-local" effects of this theory that the scaling of entanglement entropy depends on the dynamical exponent as a characteristic parameter of the theory. The scaling is such that in the massless theory for small entangling regions it leads to area law in the Lorentzian limit and volume law in the z -> infinity limit. We present strong numerical evidences in (1+1) and (2+1)-dimensions in support of this behavior. In (2+1)-dimensions we also study some shape dependent aspects of entanglement. We argue that in the massless limit corner contributions are no more additive for large enough dynamical exponent due to non-local effects of Lifshitz theories. We also comment on possible holographic duals of such theories based on the sign of tripartite information.
引用
收藏
页数:24
相关论文
共 62 条
  • [11] Calabrese P., 2013, J STAT MECH-THEORY E, V02
  • [12] Calabrese P., 2009, J PHYS A, V42
  • [13] Entanglement Negativity in Quantum Field Theory
    Calabrese, Pasquale
    Cardy, John
    Tonni, Erik
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (13)
  • [14] Universal terms for the entanglement entropy in 2+1 dimensions
    Casini, H.
    Huerta, M.
    [J]. NUCLEAR PHYSICS B, 2007, 764 (03) : 183 - 201
  • [15] Entanglement entropy in free quantum field theory
    Casini, H.
    Huerta, M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
  • [16] Entanglement entropy for a Dirac fermion in three dimensions: Vertex contribution
    Casini, H.
    Huerta, A.
    Leitao, L.
    [J]. NUCLEAR PHYSICS B, 2009, 814 (03) : 594 - 609
  • [17] Casini H., 2009, JHEP, V03
  • [18] Casini H., 2005, J STAT MECH-THEORY E, V12
  • [19] Casini H., 2016, ENTANGLEMENT QFT I T
  • [20] Mutual information and the F-theorem
    Casini, Horacio
    Huerta, Marina
    Myers, Robert C.
    Yale, Alexandre
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):