Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using WRF model

被引:46
作者
Jacondino, William Duarte [1 ]
Nascimento, Ana Lucia da Silva [2 ]
Calvetti, Leonardo [1 ]
Fisch, Gilberto [2 ]
Beneti, Cesar Augustus Assis [3 ]
da Paz, Sheila Radman [3 ]
机构
[1] Fed Univ Pelotas UFPEL, Av Idefonso Simoes Lopes 2751, BR-96060290 Pelotas, RS, Brazil
[2] Natl Inst Space Res INPE, Av Astronautas 1758, Sao Jose Dos Campos, Brazil
[3] Sistema Meteorol Parana SIMEPAR, Av Francisco H Dos Santos 210, BR-81531980 Curitiba, Parana, Brazil
关键词
WRF; Onshore; Forecast; Wind power; Brazil; WEATHER RESEARCH; PARAMETERIZATION SCHEMES; SURFACE WINDS; PRECIPITATION; SENSITIVITY; RAINFALL; ONSHORE;
D O I
10.1016/j.energy.2021.120841
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wind energy is rapidly growing industry in Brazil. Wind speed forecasting is necessary in the planning, controlling, and monitoring for the reliable and efficient operation of the wind power systems. Thus, this study focuses on the impact of different physics parameterization in forecasting wind speed in two onshore wind farms using the Weather and Research Forecasting (WRF) model. The wind farms are located in Parazinho, in the northeast of Brazil, a region with high wind resource. Hindcasts are per-formed for a high (i.e., July 2017) and low (i.e., April 2017) wind speed regimes using different forecast lead-times (i.e., 24-48 h). The best performing setup consists of Thompson microphysics, Bougeault-Lacarrere PBL, Betts-Miller cumulus, New Goddard Longwave/Shortwave radiation, and Pleim-Xiu Land Surface schemes. Our findings also suggest that the model forecast setting with the TKE closure scheme, namely BouLac, performed better than that setting with first-order closure ACM2. The best mean monthly error (MAE) obtained is 1.1 m s(-1) for wind and 12.6% for wind power. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 38 条
[1]   Koppen's climate classification map for Brazil [J].
Alvares, Clayton Alcarde ;
Stape, Jose Luiz ;
Sentelhas, Paulo Cesar ;
de Moraes Goncalves, Jose Leonardo ;
Sparovek, Gerd .
METEOROLOGISCHE ZEITSCHRIFT, 2013, 22 (06) :711-728
[2]  
[Anonymous], 2020, DATASHEET VESTAS V10
[3]  
Associacao brasileira de Energia eolica (ABEEolica), 2021, INF 19 VERS INGL 202
[4]   Evaluation of Noah land-surface models in predicting soil temperature and moisture at two tropical sites in India [J].
Bhattacharya, Anwesha ;
Mandal, Manabottam .
METEOROLOGICAL APPLICATIONS, 2015, 22 (03) :505-512
[5]   Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula [J].
Carvalho, D. ;
Rocha, A. ;
Gomez-Gesteira, M. ;
Silva Santos, C. .
APPLIED ENERGY, 2014, 135 :234-246
[6]   A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height [J].
Deppe, Adam J. ;
Gallus, William A., Jr. ;
Takle, Eugene S. .
WEATHER AND FORECASTING, 2013, 28 (01) :212-228
[7]  
Draxl C., 2015, OVERVIEW METEOROLOGI
[8]   Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes [J].
Draxl, Caroline ;
Hahmann, Andrea N. ;
Pena, Alfredo ;
Giebel, Gregor .
WIND ENERGY, 2014, 17 (01) :39-55
[9]   A preliminary sensitivity study of Planetary Boundary Layer parameterisation schemes in the weather research and forecasting model to surface winds in coastal Ghana [J].
Dzebre, Denis E. K. ;
Adaramola, Muyiwa S. .
RENEWABLE ENERGY, 2020, 146 :66-86
[10]   Sensitivity Analysis of the WRF Model: Wind-Resource Assessment for Complex Terrain [J].
Fernandez-Gonzalez, Sergio ;
Luisa Martin, Maria ;
Garcia-Ortega, Eduardo ;
Merino, Andres ;
Lorenzana, Jesus ;
Luis Sanchez, Jose ;
Valero, Francisco ;
Sanz Rodrigo, Javier .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2018, 57 (03) :733-753