Weighted norm inequalities for fractional integral operators with rough kernel
被引:79
作者:
Ding, Y
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
Ding, Y
[1
]
Lu, SZ
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
Lu, SZ
[1
]
机构:
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
来源:
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES
|
1998年
/
50卷
/
01期
关键词:
D O I:
10.4153/CJM-1998-003-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Given function Omega on R-n, we define the fractional maximal operator and fractional integral operator by M(Omega.alpha)f(x) = sup 1/r>0(rn-alpha)integral(\y\<r)\Omega(y)parallel to f(x-y)\dy and T(Omega.alpha)f(x) = integral R-n Omega(y)/\y\(n-alpha)f(x-y) dy respectively, where 0 < alpha < n. In this paper we study the weighted norm inequalities of M-Omega.alpha and T-Omega.alpha for appropriate alpha, s and A(p,q) weights in the case that Omega epsilon L-s (Sn-1) (s > 1), homogeneous of degree zero.