Weighted norm inequalities for fractional integral operators with rough kernel

被引:80
作者
Ding, Y [1 ]
Lu, SZ [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1998年 / 50卷 / 01期
关键词
D O I
10.4153/CJM-1998-003-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given function Omega on R-n, we define the fractional maximal operator and fractional integral operator by M(Omega.alpha)f(x) = sup 1/r>0(rn-alpha)integral(\y\<r)\Omega(y)parallel to f(x-y)\dy and T(Omega.alpha)f(x) = integral R-n Omega(y)/\y\(n-alpha)f(x-y) dy respectively, where 0 < alpha < n. In this paper we study the weighted norm inequalities of M-Omega.alpha and T-Omega.alpha for appropriate alpha, s and A(p,q) weights in the case that Omega epsilon L-s (Sn-1) (s > 1), homogeneous of degree zero.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 9 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES
[2]   Weak type bounds for a class of rough operators with power weights [J].
Ding, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (10) :2939-2942
[3]   WEIGHTED NORM INEQUALITIES FOR HOMOGENEOUS SINGULAR-INTEGRALS [J].
DUOANDIKOETXEA, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :869-880
[4]  
GARCIACUEERVA J, 1985, WEIGHTED NORM INEQUA
[5]   RESULTS ON WEIGHTED NORM INEQUALITIES FOR MULTIPLIERS [J].
KURTZ, DS ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 255 (NOV) :343-362
[6]   WEIGHTED NORM INEQUALITIES FOR SINGULAR AND FRACTIONAL INTEGRALS [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 161 (434) :249-+
[7]   WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRALS [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :261-274
[8]   WEIGHTED ESTIMATES FOR SINGULAR-INTEGRALS VIA FOURIER-TRANSFORM ESTIMATES [J].
WATSON, DK .
DUKE MATHEMATICAL JOURNAL, 1990, 60 (02) :389-399
[9]   WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRALS [J].
WELLAND, GV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (01) :143-148