Embedded methods for the numerical solution of the Schrodinger equation

被引:72
作者
Avdelas, G
Simos, TE
机构
[1] Lab. of Appl. Math. and Computers, Department of Sciences, Technical University of Crete, Kounoupidiana, 73 100 Chania, Crete
关键词
Schrodinger equation; phase-shift problem;
D O I
10.1016/0898-1221(95)00196-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New methods for the approximate numerical integration of the one-dimensional Schrodinger equation are developed in this paper. Complete phase-lag analysis of the new methods is included. These new methods are called embedded methods because of a simple natural error control mechanism. Numerical results obtained for a one-dimensional Schrodinger equation show the validity of the developed theory.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 41 条
[1]  
AVDELAS G, 194 TU CRET DEP SCI
[2]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[3]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[4]   A 6TH-ORDER EXPONENTIALLY FITTED METHOD FOR THE NUMERICAL-SOLUTION OF THE RADIAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD ;
SIMOS, TE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 91 (02) :413-423
[5]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[6]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[7]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[8]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[9]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[10]   NUMERICAL-METHODS FOR Y''=F(X,Y) VIA RATIONAL-APPROXIMATIONS FOR THE COSINE [J].
COLEMAN, JP .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1989, 9 (02) :145-165