Stationary particle systems approximating stationary solutions to the Boltzmann equation

被引:21
作者
Caprino, S
Pulvirenti, M
Wagner, W
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Rome La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
stationary Boltzmann equation; diffusive boundary conditions; stochastic particle system; rate of convergence;
D O I
10.1137/S0036141096309988
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a regularized stationary Boltzmann equation with diffusive boundary conditions can be rigorously derived from a suitable stochastic N-particle system. To do this, we prove that the L-1-distance between the k-particle density and the k-fold product of the solution to the stationary Boltzmann equation is of order 1/N.
引用
收藏
页码:913 / 934
页数:22
相关论文
共 17 条
[1]  
Arkeryd L, 1995, INDIANA U MATH J, V44, P815
[2]   A CONVERGENCE PROOF FOR NANBU SIMULATION METHOD FOR THE FULL BOLTZMANN-EQUATION [J].
BABOVSKY, H ;
ILLNER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :45-65
[3]  
BABOVSKY H, 1992, EUR J MECH B-FLUID, V11, P199
[4]  
Bobylev AV, 1996, EUR J MECH B-FLUID, V15, P103
[5]   The Boltzmann-Grad limit for a one-dimensional Boltzmann equation in a stationary state [J].
Caprino, S ;
Pulvirenti, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (01) :63-81
[6]   A DERIVATION OF THE BROADWELL EQUATION [J].
CAPRINO, S ;
DEMASI, A ;
PRESUTTI, E ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) :443-465
[7]   THE GRAD LIMIT FOR A SYSTEM OF SOFT SPHERES [J].
CERCIGNANI, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :479-494
[8]  
Cercignani C., 1994, APPL MATH SCI
[9]  
De Masi A., 1991, LECT NOTES MATH, V1501
[10]  
Goldstein S., 1981, C MATH SOC J BOLYAI, V27, P403