Analytical solutions of KdV equation with relaxation effect of inhomogeneous medium

被引:3
作者
Xiang, Chunhuan [1 ]
机构
[1] Chongqing Univ Arts & Sci, Coll Math & Stat, Chongqing 402160, Peoples R China
关键词
Analytical solution; KdV equation; Relaxation effect; Inhomogeneous medium; Truncated expansion; Jacobi elliptic function expansion; VARIABLE-COEFFICIENT KDV; SYMMETRIES; BURGERS;
D O I
10.1016/j.amc.2010.03.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
KdV (Korteweg-de Vries) equation with relaxation effect of inhomogeneous medium with time changing can be employed in many different physical fields. In this paper, some new analytical solutions of the equation are obtained, which may be very useful in numerical simulation, by using of the truncated expansion and Jacobi elliptic function expansion methods. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2235 / 2239
页数:5
相关论文
共 13 条
[1]   THE INTEGRATION OF BURGERS AND KORTEWEG-DEVRIES EQUATIONS WITH NONUNIFORMITIES [J].
BRUGARINO, T ;
PANTANO, P .
PHYSICS LETTERS A, 1980, 80 (04) :223-224
[2]   SYMMETRIES, CONSERVATION-LAWS AND HAMILTONIAN STRUCTURES OF THE NONISOSPECTRAL AND VARIABLE-COEFFICIENT KDV AND MKDV EQUATIONS [J].
CHAN, WL ;
ZHANG, X .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02) :407-419
[3]  
[陈凤娟 Chen Fengjuan], 2003, [兵工学报, Acta Armamentarii], V24, P389
[4]   A complex travelling wave solution to the KdV-Burgers equation [J].
Demiray, H .
PHYSICS LETTERS A, 2005, 344 (06) :418-422
[5]  
Fu ZT, 2004, APPL MATH MECH-ENGL, V25, P73
[6]   A (2+1)-dimensional sinh-Gordon equation and its Pfaffian generalization [J].
Gegenhasi ;
Hu, Xing-Biao ;
Wang, Hong-Yan .
PHYSICS LETTERS A, 2007, 360 (03) :439-447
[7]   Analytical and numerical solution of a coupled KdV-MKdV system [J].
Halim, AA ;
Leble, SB .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :99-108
[8]   Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation [J].
Li, DS ;
Zhang, HQ .
ACTA PHYSICA SINICA, 2003, 52 (07) :1569-1573
[9]   SYMMETRIES AND A HIERARCHY OF THE GENERAL KDV EQUATION [J].
TIAN, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02) :359-366
[10]   Exact soliton solutions of the variable coefficient KdV-MKdV equation with three arbitrary funtions [J].
Yan, ZY ;
Zhang, HQ .
ACTA PHYSICA SINICA, 1999, 48 (11) :1957-1961