Levy diffusion and classes of universal parametric correlations

被引:13
作者
Kusnezov, D [1 ]
Lewenkopf, CH [1 ]
机构
[1] UNIV WASHINGTON,DEPT PHYS,SEATTLE,WA 98195
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 03期
关键词
D O I
10.1103/PhysRevE.53.2283
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A general formulation of translationally invariant, parametrically correlated random matrix ensembles is used to classify universality in correlation functions. Surprisingly, the range of possible physical systems is bounded and can be labeled by a parameter alpha epsilon (0, 2), in a manner analogous to Levy diffusion. Universality is obtained after scaling by the (anomalous) diffusion constant D-alpha (the usual scaling is divergent for alpha < 2). For each alpha, correlation functions are universal and distinct. The previous results in the literature correspond to the limiting case of superdiffusion alpha = 2.
引用
收藏
页码:2283 / 2286
页数:4
相关论文
共 50 条
[21]   UNIVERSAL CYCLE CLASSES [J].
GILLET, H .
COMPOSITIO MATHEMATICA, 1983, 49 (01) :3-49
[22]   UNIVERSAL CLASSES OF ALGEBRAS [J].
KOGALOVSKY, SR .
DOKLADY AKADEMII NAUK SSSR, 1958, 122 (05) :759-761
[23]   UNIVERSAL CLASSES OF MODELS [J].
KOGALOVSKII, SR .
DOKLADY AKADEMII NAUK SSSR, 1959, 124 (02) :260-263
[24]   Correlations in Levy interest rate models [J].
Beinhofer, Maximilian ;
Eberlein, Ernst ;
Janssen, Arend ;
Polley, Manuel .
QUANTITATIVE FINANCE, 2011, 11 (09) :1315-1327
[25]   Free Levy matrices and financial correlations [J].
Burda, Z ;
Jurkiewicz, J ;
Nowak, MA ;
Papp, G ;
Zahed, I .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 343 :694-700
[26]   Universal correlations in percolation [J].
Ziff, Robert M. .
FRONTIERS OF PHYSICS, 2020, 15 (04)
[27]   PRACTICALITY OF UNIVERSAL CORRELATIONS [J].
KECHKEME.I ;
KOZMA, L .
IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1970, 34 (03) :536-&
[28]   Universal correlations in percolation [J].
Robert M. Ziff .
Frontiers of Physics, 2020, 15
[29]   Parametric survival model based on the Levy distribution [J].
Valencia-Orozco, Andrea ;
Tovar-Cuevas, Jose R. .
COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (05) :445-461
[30]   Parametric estimation of a bivariate stable Levy process [J].
Esmaeili, Habib ;
Klueppelberg, Claudia .
JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (05) :918-930