A Magnetoresistive Tactile Sensor for Harsh Environment Applications

被引:36
作者
Alfadhel, Ahmed [1 ]
Khan, Mohammed Asadullah [1 ]
Cardoso, Susana [2 ]
Leitao, Diana [2 ,3 ]
Kosel, Jurgen [1 ,3 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] INESC Microsyst & Nanotechnol INESC MN, Rua Alves Redol 9, P-1000029 Lisbon, Portugal
[3] Univ Lisbon, Dept Phys, IST, P-1049001 Lisbon, Portugal
关键词
magnetic nanocomposite; giant magnetoresistance; high temperature; harsh environment; nanowires; cilia; tactile sensor; spin-valve; MAGNETIC NANOCOMPOSITE; TEMPERATURE; DEPOSITION;
D O I
10.3390/s16050650
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 degrees C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
Alfadda A., 2015, PROCEEDINGS OF THE 2, P1, DOI DOI 10.1109/SAS.2015.7133654
[2]   A magnetic nanocomposite for biomimetic flow sensing [J].
Alfadhel, A. ;
Li, B. ;
Zaher, A. ;
Yassine, O. ;
Kosel, J. .
LAB ON A CHIP, 2014, 14 (22) :4362-4369
[3]   Magnetic Nanocomposite Cilia Tactile Sensor [J].
Alfadhel, Ahmed ;
Kosel, Juergen .
ADVANCED MATERIALS, 2015, 27 (47) :7888-7892
[4]   Flexible Magnetoelectric Nanocomposites with Tunable Properties [J].
Alnassar, Mohammed Y. ;
Ivanov, Yurii P. ;
Kosel, Juergen .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (06)
[5]  
Coey J.M.D., 2009, MAGNETISM AND MAGNET
[6]   A micromachined piezoelectric tactile sensor for an endoscopic grasper - Theory, fabrication and experiments [J].
Dargahi, J ;
Parameswaran, M ;
Payandeh, S .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2000, 9 (03) :329-335
[7]   Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor [J].
Eason, Eric V. ;
Hawkes, Elliot W. ;
Windheim, Marc ;
Christensen, David L. ;
Libby, Thomas ;
Cutkosky, Mark R. .
BIOINSPIRATION & BIOMIMETICS, 2015, 10 (01)
[8]   Wireless micromachined ceramic pressure sensor for high-temperature applications [J].
Fonseca, MA ;
English, JM ;
von Arx, M ;
Allen, MG .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2002, 11 (04) :337-343
[9]   Magnetoresistive sensors [J].
Freitas, P. P. ;
Ferreira, R. ;
Cardoso, S. ;
Cardoso, F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (16)
[10]   OPTIMIZATION AND INTEGRATION OF MAGNETORESISTIVE SENSORS [J].
Freitas, Paulo ;
Cardoso, Susana ;
Ferreira, Ricardo ;
Martins, Veronica ;
Guedes, Andre ;
Cardoso, Filipe ;
Loureiro, Joana ;
Macedo, Rita ;
Chaves, Rui ;
Amaral, Jose .
SPIN, 2011, 1 (01) :71-91