Computer vision detection of foreign objects in coal processing using attention CNN

被引:79
作者
Zhang, Kanghui [1 ]
Wang, Weidong [1 ]
Lv, Ziqi [1 ]
Fan, Yuhan [1 ]
Song, Yang [1 ]
机构
[1] China Univ Min & Technol Beijing, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Foreign object detection; Model uncertainties; Attention mechanisms; Visualization; FOOD;
D O I
10.1016/j.engappai.2021.104242
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Foreign objects in coal seriously affect the efficiency and safety of clean coal production. Currently, the removal of foreign objects in coal preparation plant mainly depends on manual picking, which has disadvantages of high labor intensity and low efficiency. Therefore, there is an urgent need for rapid detection and removal of foreign objects. However, due to the inference of the background and surround objects, it is a challenge for the accurate detection of foreign objects. In this study, a convolutional neural network (CNN) with attention modules was designed to accurately segment foreign objects from a complex background in real-time. The proposed network consists of an encoder and a decoder, and the attention mechanism was introduced into the decoder to capture rich semantic information. The visualization results proved that the attention modules could focus on the features of the salient region and inhibit the irrelevant background, which significantly improved the accuracy of the detection The results showed that the proposed model correctly recognized 97% of the foreign objects in the 1871 sets of test images. The mean intersection over union (MIOU) of the optimal model was 91.24%, and the inference speed was greater than 15 fps/s, which satisfied the real-time requirement. Foreign objects in coal seriously affect the efficiency and safety of clean coal production. Currently, the removal of foreign objects in coal preparation plant mainly depends on manual picking, which has disadvantages of high labor intensity and low efficiency. Therefore, there is an urgent need for rapid detection and removal of foreign objects. However, due to the inference of the background and surround objects, it is a challenge for the accurate detection of foreign objects. In this study, a convolutional neural network (CNN) with attention modules was designed to accurately segment foreign objects from a complex background in real-time. The proposed network consists of an encoder and a decoder, and the attention mechanism was introduced into the decoder to capture rich semantic information. The visualization results proved that the attention modules could focus on the features of the salient region and inhibit the irrelevant background, which significantly improved the accuracy of the detection The results showed that the proposed model correctly recognized 97% of the foreign objects in the 1871 sets of test images. The mean intersection over union (MIOU) of the optimal model was 91.24%, and the inference speed was greater than 15 fps/s, which satisfied the real-time requirement. Foreign objects in coal seriously affect the efficiency and safety of clean coal production. Currently, the removal of foreign objects in coal preparation plant mainly depends on manual picking, which has disadvantages of high labor intensity and low efficiency. Therefore, there is an urgent need for rapid detection and removal of foreign objects. However, due to the inference of the background and surround objects, it is a challenge for the accurate detection of foreign objects. In this study, a convolutional neural network (CNN) with attention modules was designed to accurately segment foreign objects from a complex background in real-time. The proposed network consists of an encoder and a decoder, and the attention mechanism was introduced into the decoder to capture rich semantic information. The visualization results proved that the attention modules could focus on the features of the salient region and inhibit the irrelevant background, which significantly improved the accuracy of the detection The results showed that the proposed model correctly recognized 97% of the foreign objects in the 1871 sets of test images. The mean intersection over union (MIOU) of the optimal model was 91.24%, and the inference speed was greater than 15 fps/s, which satisfied the real-time requirement.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique [J].
Altan, Aytac ;
Karasu, Seckin .
CHAOS SOLITONS & FRACTALS, 2020, 140
[2]   Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques [J].
Altan, Aytac ;
Karasu, Seckin ;
Bekiros, Stelios .
CHAOS SOLITONS & FRACTALS, 2019, 126 :325-336
[3]  
[Anonymous], 2017, arXiv 2017 1704.06857
[4]  
[Anonymous], 2016, P 29 IEEE C COMPUTER
[5]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[6]  
Bai F., 2020, PARTICUOLOGY
[7]   Region Based CNN for Foreign Object Debris Detection on Airfield Pavement [J].
Cao, Xiaoguang ;
Wang, Peng ;
Meng, Cai ;
Bai, Xiangzhi ;
Gong, Guoping ;
Liu, Miaoming ;
Qi, Jun .
SENSORS, 2018, 18 (03)
[8]  
Chew K.M.D., 2011, U.S. Patent, Patent No. [7,999,848[P], 7999848]
[9]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[10]  
Cubuk E. D., 2018, ARXIV PREPRINT ARXIV