FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS

被引:180
作者
Cao, Yanzhao [1 ]
Gunzburger, Max [2 ]
Hu, Xiaolong [3 ]
Hua, Fei [2 ,4 ]
Wang, Xiaoming [4 ]
Zhao, Weidong [5 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36830 USA
[2] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Geol, Tallahassee, FL 32306 USA
[4] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[5] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
Stokes and Darcy equations; finite element approximation; error bound; initial-boundary value problem; fluid and porous media flow; Beavers-Joseph interface boundary condition; COUPLING FLUID-FLOW; POROUS-MEDIA FLOW; BOUNDARY-CONDITION; MODEL;
D O I
10.1137/080731542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical solutions using finite element methods are considered for transient flow in a porous medium coupled to free flow in embedded conduits. Such situations arise, for example, for groundwater flows in karst aquifers. The coupled flow is modeled by the Darcy equation in a porous medium and the Stokes equations in the conduit domain. On the interface between the matrix and conduit, Beavers-Joseph interface conditions, instead of the simplified Beavers-Joseph-Saffman conditions, are imposed. Convergence and error estimates for finite element approximations are obtained. Numerical experiments illustrate the validity of the theoretical results.
引用
收藏
页码:4239 / 4256
页数:18
相关论文
共 15 条
[1]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[2]  
Cao YZ, 2010, COMMUN MATH SCI, V8, P1
[3]   Mathematical and numerical models for coupling surface and groundwater flows [J].
Discacciati, M ;
Miglio, E ;
Quarteroni, A .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :57-74
[4]   Robin-Robin domain decomposition methods for the Stokes-Darcy coupling [J].
Discacciati, Marco ;
Quarteroni, Alfio ;
Valli, Alberto .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1246-1268
[5]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[6]  
Gunzburger M., 1989, FINITE ELEMENT METHO
[7]   Error estimates for semidiscrete finite element approximations of the stokes equations under minimal regularity assumptions [J].
Hou, L.S. .
Journal of Scientific Computing, 2001, 16 (03) :287-317
[8]   On the interface boundary condition of Beavers, Joseph, and Saffman [J].
Jäger, W ;
Mikelic, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (04) :1111-1127
[9]   LOW REYNOLDS-NUMBER FLOW PAST A POROUS SPHERICAL SHELL [J].
JONES, IP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1973, 73 (JAN) :231-238
[10]   Coupling fluid flow with porous media flow [J].
Layton, WJ ;
Schieweck, F ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2195-2218