A data-driven predictive maintenance strategy based on accurate failure prognostics

被引:33
作者
Chen, Chuang [1 ]
Wang, Cunsong [1 ]
Lu, Ningyun [1 ]
Jiang, Bin [1 ]
Xing, Yin [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 211106, Peoples R China
[2] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Peoples R China
来源
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY | 2021年 / 23卷 / 02期
关键词
predictive maintenance; failure prognostics; performance degradation; maintenance cost; PLANNING STRUCTURAL INSPECTION; USEFUL LIFE ESTIMATION; POLICIES; FRAMEWORK;
D O I
10.17531/ein.2021.2.19
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Maintenance is fundamental to ensure the safety, reliability and availability of engineering systems, and predictive maintenance is the leading one in maintenance technology. This paper aims to develop a novel data-driven predictive maintenance strategy that can make appropriate maintenance decisions for repairable complex engineering systems. The proposed strategy includes degradation feature selection and degradation prognostic modeling modules to achieve accurate failure prognostics. For maintenance decision-making, the perfect time for taking maintenance activities is determined by evaluating the maintenance cost online that has taken into account of the failure prognostic results of performance degradation. The feasibility and effectiveness of the proposed strategy is confirmed using the NASA data set of aero-engines. Results show that the proposed strategy outperforms the two benchmark maintenance strategies: classical periodic maintenance and emerging dynamic predictive maintenance.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 23 条
[1]   A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance [J].
Chen, Chuang ;
Lu, Ningyun ;
Jiang, Bin ;
Wang, Cunsong .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (02) :412-422
[2]   Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture [J].
Ellefsen, Andre Listou ;
Bjorlykhaug, Emil ;
Aesoy, Vilmar ;
Ushakov, Sergey ;
Zhang, Houxiang .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 183 :240-251
[3]   Considering human error in optimizing production and corrective and preventive maintenance policies for manufacturing systems [J].
Emami-Mehrgani, Behnam ;
Neuman, W. Patrick ;
Nadeau, Sylvie ;
Bazrafshan, Majid .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (03) :2056-2074
[4]   Cooperative Predictive Maintenance of Repairable Systems With Dependent Failure Modes and Resource Constraint [J].
Fan, Hongdong ;
Hu, Changhua ;
Chen, Maoyin ;
Zhou, Donghua .
IEEE TRANSACTIONS ON RELIABILITY, 2011, 60 (01) :144-157
[5]   Framework of machine criticality assessment with criteria interactions [J].
Jasiulewicz-Kaczmarek, Malgorzata ;
Antosz, Katarzyna ;
Zywica, Patryk ;
Mazurkiewicz, Dariusz ;
Sun, Bo ;
Ren, Yi .
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2021, 23 (02) :207-220
[6]   Multi-Level Decision-Making for The Predictive Maintenance of k-Out-of-n:F Deteriorating Systems [J].
Khac Tuan Huynh ;
Barros, Anne ;
Berenguer, Christophe .
IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (01) :94-117
[7]   Machining sensor data management for operation-level predictive model [J].
Kozlowski, Edward ;
Mazurkiewicz, Dariusz ;
Zabinski, Tomasz ;
Prucnal, Slawomir ;
Sep, Jaroslaw .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 159
[8]   Data-driven proton exchange membrane fuel cell degradation predication through deep learning method [J].
Ma, Rui ;
Yang, Tao ;
Breaz, Elena ;
Li, Zhongliang ;
Briois, Pascal ;
Gao, Fei .
APPLIED ENERGY, 2018, 231 :102-115
[9]   Reliability Effects of Maintenance on TNEP Considering Preventive and Corrective Repairs [J].
Mahdavi, Meisam ;
Monsef, Hassan ;
Romero, Ruben .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) :3768-3781
[10]  
NASA, 2020, Prognostic Data Repository