Neural Rendering and Reenactment of Human Actor Videos

被引:106
作者
Liu, Lingjie [1 ,2 ]
Xu, Weipeng [2 ]
Zollhoefer, Michael [2 ,3 ]
Kim, Hyeongwoo [2 ]
Bernard, Florian [2 ]
Habermann, Marc [2 ]
Wang, Wenping [1 ]
Theobalt, Christian [2 ]
机构
[1] Univ Hong Kong, Pokfulam Rd, Hong Kong 999077, Peoples R China
[2] Max Planck Inst Informat, Saarland Informat Campus,Campus E1 4, D-66123 Saarbriicken, Germany
[3] Stanford Univ, Gates Comp Sci 353 Serra Mall, Stanford, CA 94305 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2019年 / 38卷 / 05期
关键词
Neural rendering; video-based characters; deep learning; conditional GAN; rendering-to-video translation; MOTION CAPTURE; MODEL;
D O I
10.1145/3333002
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a method for generating video-realistic animations of real humans under user control. In contrast to conventional human character rendering, we do not require the availability of a production-quality photo-realistic three-dimensional (3D) model of the human but instead rely on a video sequence in conjunction with a (medium-quality) controllable 3D template model of the person. With that, our approach significantly reduces production cost compared to conventional rendering approaches based on production-quality 3D models and can also be used to realistically edit existing videos. Technically, this is achieved by training a neural network that translates simple synthetic images of a human character into realistic imagery. For training our networks, we first track the 3D motion of the person in the video using the template model and subsequently generate a synthetically rendered version of the video. These images are then used to train a conditional generative adversarial network that translates synthetic images of the 3D model into realistic imagery of the human. We evaluate our method for the reenactment of another person that is tracked to obtain the motion data, and show video results generated from artist-designed skeleton motion. Our results outperform the state of the art in learning-based human image synthesis.
引用
收藏
页数:14
相关论文
共 75 条
[1]  
ABADI M, 2015, TENSOR FLOW LARGE SC
[2]   SCAPE: Shape Completion and Animation of People [J].
Anguelov, D ;
Srinivasan, P ;
Koller, D ;
Thrun, S ;
Rodgers, J ;
Davis, J .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :408-416
[3]  
[Anonymous], P C COMP VIS PATT RE
[4]  
[Anonymous], 2016, P IEEE C COMP VIS PA
[5]  
[Anonymous], P COMP VIS PATT REC
[6]  
[Anonymous], 2018, P IEEE C COMP VIS PA
[7]  
[Anonymous], ACM SIGGRAPH
[8]  
[Anonymous], 2017, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2017.632
[9]  
[Anonymous], 2003, ACM T GRAPH
[10]  
[Anonymous], P EUR C COMP VIS ECC