Canard Traveling Waves in a Reaction-Diffusion Model

被引:0
作者
Shchepakina, Elena [1 ]
机构
[1] Samara Natl Res Univ, Dept Tech Cybernet, Samara, Russia
来源
2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020) | 2020年
关键词
critical traveling waves; invariant manifold; canard; reaction-diffusion model; EQUATIONS; SYSTEM;
D O I
10.1109/ITNT49337.2020.9253177
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The paper deals with the canard traveling waves in a reaction-diffusion model. The use of the geometric theory of invariant manifolds allows us to simplify the traveling wave problem of the original PDE system. We are focused on point-to-periodic traveling waves. It is shown that the profile of such waves is a canard. Canard traveling waves are critical waves since they separate waves with qualitatively different behaviors.
引用
收藏
页数:4
相关论文
共 28 条
[1]  
[Anonymous], 1994, ENCY MATH SCI
[2]  
[Anonymous], 2005, AUTOWAVE PROCESSES N
[3]  
[Anonymous], 1979, STUDIES MATH ITS APP
[4]   Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system [J].
Avitabile, D. ;
Desroches, M. ;
Knobloch, E. ;
Krupa, M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2207)
[5]   Spatiotemporal canards in neural field equations [J].
Avitabile, D. ;
Desroches, M. ;
Knobloch, E. .
PHYSICAL REVIEW E, 2017, 95 (04)
[6]   From trigger to phase waves and back again [J].
Bordiougov, G ;
Engel, H .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 215 (01) :25-37
[7]   Canard solutions and travelling waves in the spruce budworm population model [J].
Buric, Lubor ;
Klic, Alois ;
Purmova, Lucie .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) :1039-1051
[8]  
cikova H. Sev, 1984, MATH MODELLING SCI T, P477
[9]  
De Maesschalck P, 2009, ADV DIFFERENTIAL EQU, V14, P943
[10]  
Diener M., 1979, NESSIE CANARDS