Effect of topography on the wetting of nanoscale patterns: experimental and modeling studies

被引:55
作者
Grewal, H. S. [1 ]
Cho, Il-Joo [1 ]
Oh, Jae-Eung [2 ]
Yoon, Eui-Sung [1 ]
机构
[1] Korea Inst Sci & Technol, Ctr BioMicrosyst, Seoul 136791, South Korea
[2] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
DYNAMIC CONTACT-ANGLE; SUPERHYDROPHOBIC SURFACES; SPREADING KINETICS; WATER; DROP; TRANSITION; CASSIE; WETTABILITY; STATES;
D O I
10.1039/c4nr04069d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated the influence of nanoscale pattern shapes, contours, and surface chemistry on wetting behavior using a combination of experimental and modeling approaches. Among the investigated topographical shapes, re-entrant geometries showed superior performance owing to their ability to restrain the liquid-air interface in accordance with Gibbs criteria. The wetting state is also controlled by the surface texture in addition to the surface chemistry. Topographies with smaller intrinsic angles are better able to support the liquid droplet. Based on these observations, two geometrical relationships for designing superhydrophobic patterns exhibiting the Cassie-Baxter state are proposed. A detailed analysis of the simulation results showed the presence of viscous forces during the initial transient phase of the droplet interaction with the solid surface even at negligible normal velocity, which was verified experimentally using a high-speed imaging technique. During this transient phase, for a polystyrene surface, the liquid front was observed to be moving with a radial velocity of 0.4 m s(-1), which gradually decreased to almost zero after 35 ms. We observed that the viscous energy dissipation density is influenced by the surface material and topography and the wetting state. The viscous energy dissipation density is minimal in the case of the Cassie-Baxter state, while it becomes quite significant for the Wenzel state. The viscous effects are reduced for topographies with smooth geometries and surfaces with high slip length.
引用
收藏
页码:15321 / 15332
页数:12
相关论文
共 53 条
  • [1] [Anonymous], ADV MATER, DOI DOI 10.1002/adma.200904411
  • [2] Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction
    Bhushan, Bharat
    Jung, Yong Chae
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (01) : 1 - 108
  • [3] First steps in the spreading of a liquid droplet -: art. no. 016301
    Biance, AL
    Clanet, C
    Quéré, D
    [J]. PHYSICAL REVIEW E, 2004, 69 (01): : 4
  • [4] Wetting of textured surfaces
    Bico, J
    Thiele, U
    Quéré, D
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 206 (1-3) : 41 - 46
  • [5] The Role of Multiscale Roughness in the Lotus Effect: Is It Essential for Super-Hydrophobicity?
    Bittoun, Eyal
    Marmur, Abraham
    [J]. LANGMUIR, 2012, 28 (39) : 13933 - 13942
  • [6] Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow
    Bixler, Gregory D.
    Bhushan, Bharat
    [J]. NANOSCALE, 2014, 6 (01) : 76 - 96
  • [7] Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces
    Bixler, Gregory D.
    Bhushan, Bharat
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (36) : 4507 - 4528
  • [8] Wettability of porous surfaces.
    Cassie, ABD
    Baxter, S
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 : 0546 - 0550
  • [9] ON THE COLLISION OF A DROPLET WITH A SOLID-SURFACE
    CHANDRA, S
    AVEDISIAN, CT
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1991, 432 (1884): : 13 - 41
  • [10] A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces
    Choi, Wonjae
    Tuteja, Anish
    Mabry, Joseph M.
    Cohen, Robert E.
    McKinley, Gareth H.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 339 (01) : 208 - 216