Genetic Network Programming for Fuzzy Association Rule-Based Classification

被引:5
|
作者
Taboada, Karla [1 ]
Mabu, Shingo [1 ]
Gonzales, Eloy [1 ]
Shimada, Kaoru [1 ]
Hirasawa, Kotaro [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Wakamatsu Ku, Kitakyushu, Fukuoka 8080135, Japan
关键词
D O I
10.1109/CEC.2009.4983239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel classification approach that integrates fuzzy classification rules and Genetic Network Programming (GNP). A fuzzy discretization technique is applied to transform the dataset, particularly for dealing with quantitative attributes. GNP is an evolutionary optimization technique that uses directed graph structures as genes instead of strings and trees of Genetic Algorithms (GA) and Genetic Programming (GP), respectively. This feature contributes to creating quite compact programs and implicitly memorizing past action sequences. Therefore, in the proposed method, taking the GNP's structure into account 1) extraction of fuzzy classification rules is done without identifying frequent itemsets used in most Apriori-based data mining algorithms, 2) calculation of the support, confidence and chi value is made in order to quantify the significance of the rules to be integrated into the classifier, 3) fuzzy membership values are used for fuzzy classification rules extraction, 4) fuzzy rules are mined through generations and stored in a general pool. On the other hand, parameters of the membership functions are evolved by non-uniform mutation in order to perform a more global search in the space of candidate membership functions. The performance of our algorithm has been compared with other relevant algorithms and the experimental results have shown the advantages and effectiveness of the proposed model.
引用
收藏
页码:2387 / 2394
页数:8
相关论文
共 50 条
  • [21] Counterfactual rule generation for fuzzy rule-based classification systems
    Zhang, Te
    Wagner, Christian
    Garibaldi, Jonathan. M.
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [22] Fuzzy Rule-Based Classification Method for Incremental Rule Learning
    Niu, Jiaojiao
    Chen, Degang
    Li, Jinhai
    Wang, Hui
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3748 - 3761
  • [23] Effect of rule weights in fuzzy rule-based classification systems
    Ishibuchi, H
    Nakashima, T
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 59 - 64
  • [24] Effect of rule weights in fuzzy rule-based classification systems
    Ishibuchi, H
    Nakashima, T
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (04) : 506 - 515
  • [25] Rule weight specification in fuzzy rule-based classification systems
    Ishibuchi, H
    Yamamoto, T
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 428 - 435
  • [26] Solder joints inspection using neural network and fuzzy rule-based classification
    Ko, KW
    Cho, HS
    Kim, JH
    Kim, JS
    1998 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - PROCEEDINGS, VOLS 1-3: INNOVATIONS IN THEORY, PRACTICE AND APPLICATIONS, 1998, : 1565 - 1570
  • [27] Compact fuzzy association rule-based classifier
    Pach, Ferenc Peter
    Gyenesei, Attila
    Abonyi, Janos
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 2406 - 2416
  • [28] SPARC: SPatial Association Rule-based Classification
    Han, JW
    Tung, AKH
    He, J
    DATA MINING FOR SCIENTIFIC AND ENGINEERING APPLICATIONS, 2001, 2 : 461 - 485
  • [29] EARC: Evidential association rule-based classification
    Geng, Xiaojiao
    Liang, Yan
    Jiao, Lianmeng
    INFORMATION SCIENCES, 2021, 547 : 202 - 222
  • [30] RULE-BASED PROGRAMMING
    MOSKOWITZ, L
    BYTE, 1986, 11 (12): : 217 - &