ALMOST EUCLIDEAN SUBSPACES OF l1N VIA EXPANDER CODES

被引:10
|
作者
Guruswami, Venkatesan [1 ,2 ]
Lee, James R. [2 ]
Razborov, Alexander [3 ,4 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[4] VA Steklov Math Inst, Moscow 117966, Russia
基金
俄罗斯基础研究基金会;
关键词
RANDOMNESS; EMBEDDINGS; SECTIONS; GRAPHS; FIELDS;
D O I
10.1007/s00493-010-2463-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit (in particular, deterministic polynomial time) construction of subspaces X subset of R-N of dimension (1-o(1))N such that for every x is an element of X, (log N)(-O(log log log N)) root N parallel to x parallel to(2) <= parallel to x parallel to(1) <= root N parallel to x parallel to(2). If we are allowed to use N-1/log log N <= N degrees((1)) random bits and dim(X) >= (1-eta)N for any fixed constant eta, the lower bound can be further improved to (log N)(-O(1))root N parallel to x parallel to(2).
引用
收藏
页码:47 / 68
页数:22
相关论文
共 2 条
  • [1] Almost-Euclidean Subspaces of l1N via Tensor Products: A Simple Approach to Randomness Reduction
    Indyk, Piotr
    Szarek, Stanislaw
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2010, 6302 : 632 - +
  • [2] Deterministic Construction of a High Dimensional lp Section in l1n for any p &lt; 2
    Karnin, Zohar S.
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 645 - 654