On squares in Lucas sequences

被引:12
作者
Bremner, A. [1 ]
Tzanakis, N.
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Univ Crete, Dept Math, Iraklion, Greece
关键词
Lucas sequence; squares; genus two curves;
D O I
10.1016/j.jnt.2006.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P and Q be non-zero integers. The Lucas sequence {U-n(P, Q)} is defined by U-0 = 0, U-1 = 1, U-n = PUn-l - QU(n-2) (n >= 2). The question of when U-n(P, Q) can be a perfect square has generated interest in the literature. We show that for n = 2, . . ., 7, U-n is a square for infinitely many pairs (P, Q) with gcd(P, Q) = 1; further, for n = 8, . . . , 12, the only non-degenerate sequences where gcd(P, Q) = 1 and U-n(P, Q) = rectangle, are given by U-8(1, -4) = 21(2), U-8(4, -17) = 620(2), and U-12(1, - 1) = 12(2). (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 9 条
[1]   Lucas sequences whose 12th or 9th term is a square [J].
Bremner, A ;
Tzanakis, N .
JOURNAL OF NUMBER THEORY, 2004, 107 (02) :215-227
[2]   The primitive solutions to x3+y9=z2 [J].
Bruin, N .
JOURNAL OF NUMBER THEORY, 2005, 111 (01) :179-189
[3]  
Bruin N, 2002, LECT NOTES COMPUT SC, V2369, P172
[4]  
Bruin N, 2003, J REINE ANGEW MATH, V562, P27
[5]  
Bruin N. B., 2002, CWI TRACT, V133
[6]  
Cohn JHE, 1964, J LOND MATH SOC, V39, P537, DOI [DOI 10.1112/JLMS/S1-39.1.537, 10.1112/jlms/s1-39.1.537]
[7]   Cycles of quadratic polynomials and rational points on a genus-2 curve [J].
Flynn, EV ;
Poonen, B ;
Schaefer, EF .
DUKE MATHEMATICAL JOURNAL, 1997, 90 (03) :435-463
[8]   The square terms in Lucas sequences [J].
Ribenboim, P ;
McDaniel, WL .
JOURNAL OF NUMBER THEORY, 1996, 58 (01) :104-123
[9]  
1995, B LONDON MATH SOC, V27, P513