Persistence properties and unique continuation of solutions of the Camassa-Holm equation

被引:248
作者
Himonas, A. Alexandrou [1 ]
Misiolek, Gerard
Ponce, Gustavo
Zhou, Yong
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[3] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[4] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
关键词
D O I
10.1007/s00220-006-0172-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that a strong solution of the Camassa-Holm equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time. In particular, a strong solution of the Cauchy problem with compact initial profile can not be compactly supported at any later time unless it is the zero solution.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 23 条
[1]   Multipeakons and the classical moment problem [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 2000, 154 (02) :229-257
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[4]   Finite propagation speed for the Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
[5]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[6]  
2-D
[7]  
Constantin A., 1998, ANN SC NORM SUPER PI, V26, P303
[8]  
Danchin R., 2001, Differ. Integral Equ, V14, P953
[9]  
DELELLIS C, 2007, IN PRESS COMM PARTIA
[10]   On uniqueness properties of solutions of Schrodinger equations [J].
Escauriaza, L. ;
Kenig, C. E. ;
Ponce, G. ;
Vega, L. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1811-1823