A geometrical interpretation of damping for discrete classically damped systems

被引:1
|
作者
Muravyov, A [1 ]
Hutton, SG [1 ]
机构
[1] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1W5, Canada
关键词
geometrical interpretation; damping; discrete classically damped systems;
D O I
10.1016/S0020-7403(97)00033-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A geometrical interpretation of complex eigenvalues for discrete classically damped systems is demonstrated. Systems with symmetric mass, stiffness, and damping matrices are considered. Graphical results are presented for mass-proportional, stiffness-proportional and for Rayleigh damping. The basic consequences of proportional damping are underlined. (C) 1997 Published by Elsevier Science Ltd.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [1] Numerical study of effect of damping on non-classically damped isolated structures
    Du, YF
    Zhang, D
    Han, JP
    Li, H
    Liu, LH
    ADVANCES IN STRUCTURAL DYNAMICS, VOLS I & II, 2000, 10 : 1281 - 1285
  • [2] Analysis of Proportional Damping or Rayleigh Damping on Damped and Undamped Systems
    Saeed, Muhammad Ahsan
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [3] Modal damping optimization for general damped structures
    Wei, Yong
    Chen, Guo-Ping
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2006, 19 (04): : 433 - 437
  • [4] Geometrical Interpretation of Joint Diagonalization
    Akhavan, S.
    Esmaeili, S.
    Kamarei, M.
    Soltanian-Zadeh, H.
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 246 - 250
  • [5] Geometrical interpretation of crystal-vapor phase equilibria and equilibria in helium systems
    Shablovskii, Ya. O.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 83 (06) : 907 - 912
  • [6] Geometrical interpretation of crystal-vapor phase equilibria and equilibria in helium systems
    Ya. O. Shablovskii
    Russian Journal of Physical Chemistry A, 2009, 83 : 907 - 912
  • [7] A discrete model of damped acoustic metamaterials
    Bobrovnitskii, Yu. I.
    Tomilina, T. M.
    Laktionova, M. M.
    ACOUSTICAL PHYSICS, 2016, 62 (01) : 1 - 7
  • [8] A discrete model of damped acoustic metamaterials
    Yu. I. Bobrovnitskii
    T. M. Tomilina
    M. M. Laktionova
    Acoustical Physics, 2016, 62 : 1 - 7
  • [9] INDSCAL model:: geometrical interpretation and methodology
    Husson, F
    Pagès, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (02) : 358 - 378
  • [10] Geometrical interpretation and architecture selection of MLP
    Xiang, C
    Ding, SQ
    Lee, TH
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (01): : 84 - 96