Linear coloring of graphs without 4-cycles and embeddable in a surface of nonnegative Euler characteristic

被引:1
作者
Wang, Weifan [1 ]
Wang, Yiqiao [2 ]
Sun, Haina [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Zhejiang Univ, Ningbo Inst Technol, Dept Fundamental Courses, Ningbo 315100, Zhejiang, Peoples R China
关键词
Linear coloring; graph; Euler characteristic;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is a union of vertex-disjoint paths. The linear chromatic number lc(G) of G is the smallest number of colors in a linear coloring of G. In this paper, we prove that if G is a graph without 4-cycles that is embeddable in a surface of nonnegative Euler characteristic, then lc(G) <= [Delta/2] + 11, where Delta denotes the maximum degree of G.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 5 条
  • [1] Linear choosability of graphs
    Esperet, Louis
    Montassier, Mickael
    Raspaud, Andre
    [J]. DISCRETE MATHEMATICS, 2008, 308 (17) : 3938 - 3950
  • [2] Colouring a graph frugally
    Hind, H
    Molloy, M
    Reed, B
    [J]. COMBINATORICA, 1997, 17 (04) : 469 - 482
  • [3] Li C., DISCRETE MA IN PRESS
  • [4] Linear coloring of graphs embeddable in a surface of nonnegative characteristic
    Wang WeiFan
    Li Chao
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 991 - 1003
  • [5] Linear coloring of graphs
    Yuster, R
    [J]. DISCRETE MATHEMATICS, 1998, 185 (1-3) : 293 - 297