On the clifford short-time fourier transform and its properties

被引:10
作者
De Martino, Antonio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
Clifford analysis; Clifford-Fourier transform; Short-time fourier transform;
D O I
10.1016/j.amc.2021.126812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate how the short-time Fourier transform can be extended in a Clifford setting. We prove some of the main properties of the Clifford short-time Fourier transform such as the orthogonality relation, the reconstruction property and the repro-ducing kernel formula. Moreover, we show the effects of modulating and translating the signal and the window function, respectively. Finally, we demonstrate the Lieb's uncer-tainty principle for the Clifford short-time Fourier transform.(c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 23 条
  • [1] Abreu L D., 2014, HARMONIC COMPLEX ANA, P1, DOI [10.1007/978-3-319-01806-5_1, DOI 10.1007/978-3-319-01806-5_1]
  • [2] Bahri M., 2011, FOURIER TRANSFORMS A
  • [3] Brackx F., 1982, PINTMAN RESERCH NOTE, V76
  • [4] Convolution Products for Hypercomplex Fourier Transforms
    Bujack, Roxana
    De Bie, Hendrik
    De Schepper, Nele
    Scheuermann, Gerik
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 48 (03) : 606 - 624
  • [5] Cerejeiras P., 2014, OPERATOR THEORY
  • [6] Structural Results for Quaternionic Gabor Frames
    Cerejeiras, Paula
    Hartmann, Stefan
    Orelma, Heikki
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (05)
  • [7] COLOMBO F, 2004, PROG MATH P, V39, pR9
  • [8] A new construction of the Clifford-Fourier kernel
    Constales, Denis
    De Bie, Hendrik
    Lian, Pan
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 462 - 483
  • [9] De Bie H., 2014, OPERATOR THEORY
  • [10] Generalized Fourier Transforms Arising from the Enveloping Algebras of sl(2) and osp(1|2)
    De Bie, Hendrik
    Oste, Roy
    van der Jeugt, Joris
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (15) : 4649 - 4705