On the clifford short-time fourier transform and its properties

被引:10
作者
De Martino, Antonio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
关键词
Clifford analysis; Clifford-Fourier transform; Short-time fourier transform;
D O I
10.1016/j.amc.2021.126812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate how the short-time Fourier transform can be extended in a Clifford setting. We prove some of the main properties of the Clifford short-time Fourier transform such as the orthogonality relation, the reconstruction property and the repro-ducing kernel formula. Moreover, we show the effects of modulating and translating the signal and the window function, respectively. Finally, we demonstrate the Lieb's uncer-tainty principle for the Clifford short-time Fourier transform.(c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 23 条
[1]  
Abreu, 2014, TRENDS MATH, P1
[2]  
[Anonymous], 1991, Cambridge Studies in Advanced Mathematics
[3]  
Bahri M., 2011, FOURIER TRANSFORMS A
[4]  
Brackx F., 1982, PINTMAN RESERCH NOTE, V76
[5]   Convolution Products for Hypercomplex Fourier Transforms [J].
Bujack, Roxana ;
De Bie, Hendrik ;
De Schepper, Nele ;
Scheuermann, Gerik .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 48 (03) :606-624
[6]  
Cerejeiras P., 2014, OPERATOR THEORY
[7]   Structural Results for Quaternionic Gabor Frames [J].
Cerejeiras, Paula ;
Hartmann, Stefan ;
Orelma, Heikki .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (05)
[8]  
COLOMBO F, 2004, PROG MATH P, V39, pR9
[9]   A new construction of the Clifford-Fourier kernel [J].
Constales, Denis ;
De Bie, Hendrik ;
Lian, Pan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) :462-483
[10]  
De Bie H., 2014, Operator Theory