Revised geometric measure of entanglement

被引:17
作者
Cao, Ya [1 ]
Wang, An Min [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
关键词
D O I
10.1088/1751-8113/40/13/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a revised geometric measure of entanglement (RGME) which is just certain generalization of geometric measure of entanglement (GME). The revised version is an entanglement monotone. Some useful inequalities about RGME are deduced. For example, we give the formulae of RGME for the two-parameter class of states in a 2. n quantum system, the two particles' high dimensional maximally entangled mixed state, the isotropic state including the n-particle d-level case and two multipartite bound entangled states. The results show there is a relation (E) over tilde (sin2) <= E-re, and then RGME is an appropriate measure of entanglement.
引用
收藏
页码:3507 / 3537
页数:31
相关论文
共 56 条
[1]  
AKHTARSHENAS SJ, 2003, QUANTPH0304019
[2]   Entanglement cost under positive-partial-transpose-preserving operations - art. no. 0279015 [J].
Audenaert, K ;
Plenio, MB ;
Eisert, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[3]   Monotones and invariants for multi-particle quantum states [J].
Barnum, H ;
Linden, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6787-6805
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Optimal entanglement witnesses for qubits and qutrits [J].
Bertlmann, RA ;
Durstberger, K ;
Hiesmayr, BC ;
Krammer, P .
PHYSICAL REVIEW A, 2005, 72 (05)
[6]   Entanglement monotone derived from Grover's algorithm [J].
Biham, O ;
Nielsen, MA ;
Osborne, TJ .
PHYSICAL REVIEW A, 2002, 65 (06) :623121-623127
[7]   Connecting the generalized robustness and the geometric measure of entanglement [J].
Cavalcanti, D .
PHYSICAL REVIEW A, 2006, 73 (04)
[8]   Concurrence of arbitrary dimensional bipartite quantum states [J].
Chen, K ;
Albeverio, S ;
Fei, SM .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[9]   A lower bound on entanglement of formation of 2 ⊗ n system [J].
Chen, PX ;
Liang, LM ;
Li, CZ ;
Huang, MQ .
PHYSICS LETTERS A, 2002, 295 (04) :175-177
[10]  
CHIF DP, 2003, J PHYS A, V36, P11503