Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys

被引:79
作者
Hou, Jinxiong [1 ]
Shi, Xiaohui [1 ,2 ]
Qiao, Junwei [1 ,2 ]
Zhang, Yong [3 ]
Liaw, Peter K. [4 ]
Wu, Yucheng [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Shanxi, Peoples R China
[3] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
High-entropy alloys; Ultrafine-grained; Cold-rolling; Recrystallization; Properties; MECHANICAL-PROPERTIES; HALL-PETCH; THERMAL-STABILITY; MICROSTRUCTURE; BEHAVIOR; GROWTH; DUCTILITY; STRENGTH; TEXTURE; DESIGN;
D O I
10.1016/j.matdes.2019.107910
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A duplex microstructure consisting of body-centered-cubic (BCC/B2) and face-centered-cubic (FCC) phases was observed after homogenization and recrystallization treatments in Al0.45CoCrFeNi high-entropy alloys (HEAs). The precipitates of BCC phase effectively suppressed the grain growth during recrystallization and annealing, resulting in an ultrafine-grained microstructure. Analysis based on the modified Zener-Smith model and growth kinetics for grain size of the matrix indicate the phase boundaries act as strong obstacle for grain coarsening. This dual phase HEAs exhibit yield strength values varying widely from 300 MPa to 1200 MPa, depending on the heat treatment conditions and corresponding microstructures. An excellent combination of yield strength (similar to 980 MPa), ultimate tensile strength (similar to 1160 MPa), and tensile elongation (similar to 15%) was achieved by optimizing and coupling both phase precipitation and recrystallization kinetics. The current work describes a strategy in developing high-performance ultrafine-grained HEAs for future industrial applications. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 44 条
[1]   High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys [J].
Butler, T. M. ;
Alfano, J. P. ;
Martens, R. L. ;
Weaver, M. L. .
JOM, 2015, 67 (01) :246-259
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[4]   EXTENSION OF THE HALL-PETCH RELATION TO 2-DUCTILE-PHASE ALLOYS [J].
FAN, Z ;
TSAKIROPOULOS, P ;
SMITH, PA ;
MIODOWNIK, AP .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1993, 67 (02) :515-531
[5]   Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy [J].
Feuerbacher, Michael .
SCIENTIFIC REPORTS, 2016, 6
[6]   Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J].
Frommeyer, Georg ;
Bruex, Udo .
STEEL RESEARCH INTERNATIONAL, 2006, 77 (9-10) :627-633
[7]  
Gao M.C., 2016, High -Entropy Alloys Fundamentals and Applications, DOI [10.1007/978-3-319-27013-5, DOI 10.1007/978-3-319-27013-5]
[8]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[9]   Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J].
Gwalani, B. ;
Soni, Vishal ;
Lee, Michael ;
Mantri, S. A. ;
Ren, Yang ;
Banerjee, R. .
MATERIALS & DESIGN, 2017, 121 :254-260
[10]   Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys [J].
He, J. Y. ;
Wang, H. ;
Wu, Y. ;
Liu, X. J. ;
Mao, H. H. ;
Nieh, T. G. ;
Lu, Z. P. .
INTERMETALLICS, 2016, 79 :41-52