Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction

被引:20
作者
Huang, Xiaoxiong [1 ,2 ]
Ma, Yingjie [1 ]
Zhi, Linjie [1 ,2 ]
机构
[1] CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Single-atom nickel; Nitrogenated two-dimensional carbon matrix; Ni-N-C catalyst; Pyrolysis; CO2; reduction; Electrocatalysis; Carbon monoxide; ELECTROCATALYTIC REDUCTION; ELECTROREDUCTION;
D O I
10.3866/PKU.WHXB202011050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gradual increase of CO2 concentration in the atmosphere is believed to have a profound impact on the global climate and environment. To address this issue, strategies toward effective CO2 conversion have been CO2 developed. As one of the most available strategies, the CO2 electrochemical reduction approach is particularly attractive because the required energy can be supplied from renewable sources such as solar energy. Electrochemical reduction NNC of CO2 to chemical feedstocks offers a promising strategy for mitigating CO2 emissions from anthropogenic activities; however, a critical challenge for this approach is to develop effective electrocatalysts with ultrahigh activity and selectivity. Herein, we report the facile synthesis of a highly efficient and stable atomically isolated nickel catalyst supported by ultrathin nitrogenated carbon nanosheets (Ni-N-C) for CO2 reduction through pyrolysis of Ni-doped metal-organic frameworks (MOFs) and dicyandiamide (DCDA). MOFs are crystalline and assembled by metal-containing nodes and organic linkers, which have a large specific surface area, tunable pore size and porosity, and highly dispersed unsaturated metal centers. Thus, Ni-doped MOFs were chosen as the precursors to endow Ni-N-C with a porous carbon structure and nickel ions. The nitrogen in Ni-N-C came from DCDA, which acts as the active site to anchor nickel ions. Because of the porous structure and numerous nitrogen sites, the Ni content of Ni-N-C was as high as 7.77% (w). There were two types of nickel ion-containing structures, including Nit-N-C and Ni2+-N-C. The structure transformation of the Nit-N-C species from the initial Ni2+ (Ni-MOF) was achieved by pyrolysis, and the ratio of Ni+ and Ni2+ varied with the pyrolysis temperature. Compared to other Ni-N-C prepared at other temperatures, Ni-N-C-800 contained more Nit-N-C species that possessed the optimum *CO binding energy and thus boosted the CO desorption and evolution rate, thereby exhibiting higher CO Faradaic efficiency (FE) up to 94.6% at -0.9 V (vs. the reversible hydrogen electrode, RHE) in 0.1 moI L-1 KHCO3. In addition, it has been found that the rate of CO formation on the Ni-N-C-800 electrode relies on the electrolyte concentration. With the optimal electrolyte concentration, the Ni-N-C-800 electrode achieved a superior Faraday efficiency of > 90% for CO over a wide potential range of -0.77 to -1.07 V (vs. RHE) and displayed a CO FE as high as 97.9% with a current density of 12.6 mA cm(-2) at -0.77 V (vs. RHE) in 0.5 mol.L-1 KHCO3. After testing at -0.77 V for 12 h, the Ni-N-C-800 electrode maintained a CO FE of approximately 95%, indicating superior long-term stability. We believe that this study will contribute to the design and synthesis of highly catalytically active atomically dispersed monovalent metal sites for metal-N-C catalysts.
引用
收藏
页数:9
相关论文
共 42 条
  • [1] Recent Progress on Electrochemical Reduction of Carbon Dioxide
    Bai Xiao-Fang
    Chen Wei
    Wang Bai-Yin
    Feng Guang-Hui
    Wei Wei
    Jiao Zheng
    Sun Yu-Han
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2388 - 2403
  • [2] What Should We Make with CO2 and How Can We Make It?
    Bushuyev, Oleksandr S.
    De Luna, Phil
    Cao Thang Dinh
    Tao, Ling
    Saur, Genevieve
    van de lagemaat, Jao
    Kelley, Shana O.
    Sargent, Edward H.
    [J]. JOULE, 2018, 2 (05) : 825 - 832
  • [3] Tuning Cu/Cu2O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions
    Chang, Xiaoxia
    Wang, Tuo
    Zhao, Zhi-Jian
    Yang, Piaoping
    Greeley, Jeffrey
    Mu, Rentao
    Zhang, Gong
    Gong, Zhongmiao
    Luo, Zhibin
    Chen, Jun
    Cui, Yi
    Ozin, Geoffrey A.
    Gong, Jinlong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (47) : 15415 - 15419
  • [4] Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO
    Gabardo, Christine M.
    Seifitokaldani, Ali
    Edwards, Jonathan P.
    Cao-Thang Dinh
    Burdyny, Thomas
    Kibria, Md Golam
    O'Brien, Colin P.
    Sargent, Edward H.
    Sinton, David
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) : 2531 - 2539
  • [5] Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers
    Gao, Fei-Yue
    Bao, Rui-Cheng
    Gao, Min-Rui
    Yu, Shu-Hong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15458 - 15478
  • [6] Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium
    Garcia, Jesus
    Jimenez, Carlos
    Martinez, Fabiola
    Camarillo, Rafael
    Rincon, Jesusa
    [J]. JOURNAL OF CATALYSIS, 2018, 367 : 72 - 80
  • [7] Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO
    Gu, Jun
    Hsu, Chia-Shuo
    Bai, Lichen
    Chen, Hao Ming
    Hu, Xile
    [J]. SCIENCE, 2019, 364 (6445) : 1091 - +
  • [8] Understanding the Origin of Selective Reduction of CO2 to CO on Single-Atom Nickel Catalyst
    He, Shi
    Ji, Dong
    Zhang, Junwei
    Novello, Peter
    Li, Xueqian
    Zhang, Qiang
    Zhang, Xixiang
    Liu, Jie
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (03) : 511 - 518
  • [9] Advanced technology paths to global climate stability: Energy for a greenhouse planet
    Hoffert, MI
    Caldeira, K
    Benford, G
    Criswell, DR
    Green, C
    Herzog, H
    Jain, AK
    Kheshgi, HS
    Lackner, KS
    Lewis, JS
    Lightfoot, HD
    Manheimer, W
    Mankins, JC
    Mauel, ME
    Perkins, LJ
    Schlesinger, ME
    Volk, T
    Wigley, TML
    [J]. SCIENCE, 2002, 298 (5595) : 981 - 987
  • [10] Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction
    Jiang, Kun
    Sandberg, Robert B.
    Akey, Austin J.
    Liu, Xinyan
    Bell, David C.
    Norskov, Jens K.
    Chan, Karen
    Wang, Haotian
    [J]. NATURE CATALYSIS, 2018, 1 (02): : 111 - 119