GROUND STATES FOR KIRCHHOFF-TYPE EQUATIONS WITH CRITICAL GROWTH

被引:6
作者
Li, Quanqing [1 ,2 ]
Teng, Kaimin [3 ]
Wu, Xian [4 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[4] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
Kirchhoff-type equation; critical growth; ground state solutions; HIGH-ENERGY SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; BEHAVIOR;
D O I
10.3934/cpaa.2018124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Kirchhoff-type equation with critical growth -(a + b integral(3)(R) vertical bar del vertical bar(2)dx)Delta u + V(x)u = lambda f(x,u) + vertical bar u vertical bar(4)u, x is an element of R-3, where a > 0, b > 0, lambda > 0 and f is a continuous superlinear but subcritical nonlinearity. When V and f are asymptotically periodic in x, we prove that the equation has a ground state solution for large lambda by Nehari method. Moreover, we regard b as a parameter and obtain a convergence property of the ground state solution as b SE arrow 0.
引用
收藏
页码:2623 / 2638
页数:16
相关论文
共 26 条
[1]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[2]  
[Anonymous], 1883, Mechanik
[3]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[4]  
Bartsch T, 2005, HBK DIFF EQUAT STATI, V2, P1, DOI 10.1016/S1874-5733(05)80009-9
[5]  
Bernstein S., 1940, Bull. Acad. Sci. URSS. Sr. Math. (Izvestia Akad. Nauk SSSR), V4, P17
[6]  
Cavalcanti MM., 2001, Adv. Differential Equations, V6, P701
[7]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[8]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[9]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[10]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527