Quasi-permutation polynomials

被引:0
作者
Laohakosol, Vichian [1 ]
Janphaisaeng, Suphawan [2 ]
机构
[1] Kasetsart Univ, Bangkok 10900, Thailand
[2] Naresuan Univ, Phitsanulok 65000, Thailand
关键词
finite fields; permutation polynomials; FINITE-FIELD PERMUTE; ELEMENTS;
D O I
10.1007/s10587-010-0028-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established. Different types of quasi-permutation polynomials and the problem of counting quasi-permutation polynomials of fixed degree are investigated.
引用
收藏
页码:457 / 488
页数:32
相关论文
共 11 条
[1]   CHARACTERIZATION OF PERMUTATION POLYNOMIALS OVER A FINITE-FIELD [J].
CARLITZ, L ;
LUTZ, JA .
AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (09) :746-748
[2]   Circular Tuscan-k arrays from permutation binomials [J].
Chu, WS ;
Golomb, SW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (01) :195-202
[3]   The number of permutation polynomials of a given degree over a finite field [J].
Das, P .
FINITE FIELDS AND THEIR APPLICATIONS, 2002, 8 (04) :478-490
[4]  
GANTMACHER FR, 1977, THEORY MATRICES, V1
[5]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) :243-246
[6]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD .2. [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) :71-74
[7]  
Niederreiter H., 1983, FINITE FIELDS
[8]  
Small C., 1990, Int. J. Math. Sci, V13, P337, DOI [10.1155/S0161171290000497, DOI 10.1155/S0161171290000497]
[9]   PERMUTATION POLYNOMIALS OF THE FORM X(R)F(X((Q-1)/D)) AND THEIR GROUP-STRUCTURE [J].
WAN, DQ ;
LIDL, R .
MONATSHEFTE FUR MATHEMATIK, 1991, 112 (02) :149-163
[10]  
Wan Z.-X, 2003, LECT FINITE FIELDS G, DOI [10.1142/5350, DOI 10.1142/5350]