A Self-Consistent SDD-NEGF Approach for Modelling Magnetic Tunnel Junctions

被引:0
|
作者
Siu, Z. B. [1 ,2 ,3 ]
Jalil, M. B. A. [4 ,5 ]
Tan, S. G. [3 ,5 ]
Wang, J. -S. [1 ,2 ,6 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[3] Agcy Sci Technol & Res, Data Storage Inst, Singapore 117608, Singapore
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Informat Storage Mat Lab, Singapore 117576, Singapore
[5] Natl Univ Singapore, Dept Elect & Comp Engn, Computat Nanoelect & Nanodevice Lab, Singapore 117576, Singapore
[6] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
关键词
Magnetic tunnel junctions; non-equilibrium Green's function; spin diffusion drift; GIANT MAGNETORESISTANCE;
D O I
10.1109/TMAG.2010.2044979
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most contemporary work on magnetic tunnel junctions either consider ballistic quantum transport across the tunneling barrer, for instance via the Non Equilibrium Green's Function (NEGF) formalism, or treat the tunneling region as a lump resistance connected to bulk metallic leads in the Spin Drift-Diffusion (SDD) approach. The effects of interfacial barriers and central device physics on the spin accumlation in the leads have largely been ignored in most NEGF calculations. In this work we introduce a self consistent approach that combines the NEGF and SDD methods. We calculate the effects of the barrier potential height and spin orbit interaction on the spin injection from a ferromagnet to a semiconductor through the barrier.
引用
收藏
页码:1591 / 1594
页数:4
相关论文
共 50 条
  • [31] SELF-CONSISTENT EQUATION FOR THE MAGNETIC MASS OF A GLUON
    KALASHNIKOV, OK
    JETP LETTERS, 1985, 41 (03) : 149 - 153
  • [32] Quasi-two-dimensional magnetic polaron:: an exact self-consistent approach
    Reyes, A
    Camacho, A
    Rodríguez, FJ
    Quiroga, L
    REVISTA MEXICANA DE FISICA, 1998, 44 : 126 - 129
  • [33] Self-consistent modelling of overdense plasmas in ECR discharges
    Hemmers, D
    David, M
    Kempkens, H
    Uhlenbusch, J
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (17) : 2155 - 2164
  • [34] Self-consistent modelling of our Galaxy with Gaia data
    Binney, James
    ASTROMETRY AND ASTROPHYSICS IN THE GAIA SKY, 2018, 12 (S330): : 111 - 118
  • [35] Self-consistent modelling of plasma-solid interaction
    Hrach, R
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1999, 49 (02) : 155 - 165
  • [36] A self-consistent treatment of radiation in coronal loop modelling
    Bradshaw, SJ
    Mason, HE
    ASTRONOMY & ASTROPHYSICS, 2003, 401 (02) : 699 - 709
  • [37] A self-consistent treatment of radiation in coronal loop modelling
    Bradshaw, S.J.
    Mason, H.E.
    1600, EDP Sciences (401):
  • [38] Self-Consistent COREDIV Modelling of WEST Plasma Scenarios
    Marandet, Y.
    Ivanova-Stanik, I.
    Zagorski, R.
    Bourdelle, C.
    Bucalossi, J.
    Bufferand, H.
    Ciraolo, G.
    Tsitrone, E.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 353 - 357
  • [39] Collective pairing hamiltonian in a self-consistent approach
    Prochniak, L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2007, 16 (02) : 352 - 359
  • [40] SELF-CONSISTENT APPROACH TO LOCALIZATION AND THE ANDERSON TRANSITION
    THOMPSON, CJ
    MATSUBARA, T
    PROGRESS OF THEORETICAL PHYSICS, 1991, 86 (06): : 1191 - 1210