Spline Collocation for Cordial Volterra Integral Equations

被引:28
作者
Vainikko, Gennadi [1 ]
机构
[1] Univ Tartu, Inst Math, EE-50409 Tartu, Estonia
关键词
Cordial Volterra operators; Noncompact operators; Spline collocation; Volterra integral equations; QUASI-INTERPOLATION METHOD;
D O I
10.1080/01630561003757710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence and convergence speed of two versions of spline collocation methods on the uniform grids for linear Volterra integral equations of the second kind with noncompact operators.
引用
收藏
页码:313 / 338
页数:26
相关论文
共 18 条
[1]  
Brunner, 2010, 7 LECTIRES THEORY NU
[2]   The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations [J].
Brunner, H ;
Pedas, A ;
Vainikko, G .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1079-1095
[3]  
BRUNNER H, 1986, CWI MONOGR, V3
[4]  
CHANDLER GA, 1988, MATH COMPUT, V50, P125, DOI 10.1090/S0025-5718-1988-0917821-1
[5]  
DIOGO T, APPLICABILITY SPLINE
[6]   Superconvergence of collocation methods for a class of weakly singular Volterra integral equations [J].
Diogo, Teresa ;
Lima, Pedro .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) :307-316
[7]   Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations [J].
Diogo, Teresa .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (02) :363-372
[8]   ON SPLINE APPROXIMATION FOR A CLASS OF NONCOMPACT INTEGRAL-EQUATION [J].
ELSCHNER, J .
MATHEMATISCHE NACHRICHTEN, 1990, 146 :271-321
[9]   Numerical methods for integral equations of Mellin type [J].
Elschner, J ;
Graham, IG .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) :423-437
[10]   Convergence of spline collocation for Volterra integral equations [J].
Kangro, Raul ;
Oja, Peeter .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (10) :1434-1447