Thermo-hydraulic behavior of alumina/silica hybrid nanofluids through a straight minichannel heat sink

被引:16
作者
Khan, Asif [1 ]
Ali, Muddassir [1 ,2 ]
机构
[1] Univ Engn & Technol, Fac Mech & Aeronaut Engn, Dept Mech Engn, Taxila 47050, Pakistan
[2] Univ Engn & Technol, Fac Mech & Aeronaut Engn, Dept Energy Engn, Taxila 47050, Pakistan
关键词
Heat transfer coefficient; Hybrid nanofluid; Minichannel heat sink; Nusselt number; Pressure drop measurements; EFFECTIVE THERMAL-CONDUCTIVITY; FLOW; WATER; PERFORMANCE; ENHANCEMENT; PARAMETERS; AL2O3-H2O; STABILITY; VISCOSITY; SHAPE;
D O I
10.1016/j.csite.2022.101838
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, the hydraulic and thermal performances of dissimilar particles of alumina-silica/ water hybrid nanofluid are experimentally investigated in a minichannel heat sink. Stable alumina-silica/water hybrid nanofluid is used as a coolant having a volume concentration of 0.01%. A total of 12 rectangular minichannels with 1 mm depth, 1 mm width, and a hydraulic diameter of 22 mm are used. The effect of Reynolds number on the Nusselt number, heat transfer coefficient, thermal resistance, pressure drop, pumping power, and friction factor are analyzed for various heating powers. Results indicate that the alumina/silica hybrid nanofluid can enhance heat transfer and pressure drop in a straight minichannel heat sink as compared with the base fluid (water). For heating power at 55 W, the use of hybrid nanofluid enhances heat transfer rate, pressure drop, and thermal performance up to 13.79%, 4.35%, and 31.16%, respectively. Moreover, it can be concluded that heating power had a significant effect on pressure drop and heat transfer for hybrid nanofluids. Finally, the performance evaluation criteria (PEC) for all nanofluids in a straight minichannel heat sink is always greater than one.
引用
收藏
页数:15
相关论文
共 50 条
[1]   A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications [J].
Adun, Humphrey ;
Wole-Osho, Ifeoluwa ;
Okonkwo, Eric C. ;
Kavaz, Doga ;
Dagbasi, Mustafa .
JOURNAL OF MOLECULAR LIQUIDS, 2021, 340 (340)
[2]   Entropy generation analysis of graphene-alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler [J].
Ahammed, Nizar ;
Asirvatham, Lazarus Godson ;
Wongwises, Somchai .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 :1084-1097
[3]   Effect of a micro heat sink geometric design on thermo-hydraulic performance: A review [J].
Alihosseini, Yousef ;
Targhi, Mohammad Zabetian ;
Heyhat, Mohammad Mahdi ;
Ghorbani, Nima .
APPLIED THERMAL ENGINEERING, 2020, 170
[4]   Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink [J].
Arani, Ali Akbar Abbasian ;
Akbari, Omid Ali ;
Safaei, Mohammad Reza ;
Marzban, Ali ;
Airashed, Abdullah A. A. A. ;
Ahmadi, Gholam Reza ;
Truong Khang Nguyen .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 :780-795
[5]   Experimental and numerical study on the performance of a minichannel heat sink with different header geometries using nanofluids [J].
Awais, Ahmad Ali ;
Kim, Man-Hoe .
APPLIED THERMAL ENGINEERING, 2020, 171
[6]   Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges [J].
Babar, Hamza ;
Ali, Hafiz Muhammad .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 281 :598-633
[7]   Efficacy of hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs [J].
Bahiraei, Mehdi ;
Jamshidmofid, Mohammad ;
Goodarzi, Marjan .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 273 :88-98
[8]   THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS [J].
BRINKMAN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :571-571
[9]   Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids [J].
Corcione, Massimo .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) :789-793
[10]   Review of passive heat transfer augmentation techniques [J].
Dewan, A ;
Mahanta, P ;
Raju, KS ;
Kumar, PS .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2004, 218 (A7) :509-527