Liquid lithium metal processing into ultrathin metal anodes for solid state batteries

被引:37
作者
Schoenherr, Kay [1 ]
Schumm, Benjamin [1 ]
Hippauf, Felix [1 ]
Lissy, Robin [1 ,3 ]
Althues, Holger [1 ]
Leyens, Christoph [1 ,2 ]
Kaskel, Stefan [1 ,3 ]
机构
[1] Fraunhofer Inst Mat & Beam Technol IWS, Chem Surface & Battery Technol, Winterbergst 28, D-01237 Dresden, Saxony, Germany
[2] Tech Univ Dresden, Inst Mat Sci, Helmholtzstr 7, D-01069 Dresden, Germany
[3] Tech Univ Dresden, Chair Inorgan Chem 1, Helmholtzstr 10, D-01069 Dresden, Germany
来源
CHEMICAL ENGINEERING JOURNAL ADVANCES | 2022年 / 9卷
关键词
Lithium metal anode; All-solid-state battery; Lithium ion battery; Lithium deposition; LI-ION BATTERIES; DEPOSITION; SILICON;
D O I
10.1016/j.ceja.2021.100218
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium metal anodes are among the most promising candidates for further increasing the energy density of lithium ion batteries and all-solid-state batteries. A reduction of the anode thickness by using ultrathin lithium metal films is a crucial requirement to achieve a significant overall reduction of thickness on cell level. However, besides anode stabilization, realizing scalable technologies for an efficient production of thin lithium metal anodes is one of the most challenging obstacles for the success of various next-generation battery chemistries. In this publication we introduce a disruptive lithium melt deposition process for thin lithium metal coating on thin copper current collector foils. The wetting of molten lithium on the substrate can only be achieved through a lithiophilic interlayer. As a result fast and homogeneous lithium spreading on the substrate is enabled allowing roll-to-roll coating with liquid-deposition technologies as demonstrated in this contribution with a speed of several meters per minute and reaching 100 mm width. With this new process the anode thickness can be tuned in a wide range (1-30 mu m). Evaluation in a prototype solid battery system shows high electrochemical lithium utilization and no detrimental effects compared to commercially available lithium reference foils.
引用
收藏
页数:7
相关论文
共 51 条
[1]  
Alaburda R.D., 1974, [No title captured], Patent No. [US3928681, 3928681]
[2]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[3]   The Role of Balancing Nanostructured Silicon Anodes and NMC Cathodes in Lithium-Ion Full-Cells with High Volumetric Energy Density [J].
Baasner, Anne ;
Reuter, Florian ;
Seidel, Matthias ;
Krause, Andreas ;
Pflug, Erik ;
Haertel, Paul ;
Doerfler, Susanne ;
Abendroth, Thomas ;
Althues, Holger ;
Kaskel, Stefan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (02)
[4]   Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions [J].
Borchardt, Lars ;
Oschatz, Martin ;
Kaskel, Stefan .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (22) :7324-7351
[5]  
Bouchard P., 1999, [No title captured], Patent No. [CA2099524C, 2099524]
[6]  
Brodd R.J., 1994, [No title captured], Patent No. [US005522955A, 005522955]
[7]  
Buecher U.W., 1995, [No title captured], Patent No. [US5407697A, 5407697]
[8]  
Cairns E.J., 2004, Encyclopedia of Energy
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895