Identification of Alzheimer's Disease and Mild Cognitive Impairment Using Networks Constructed Based on Multiple Morphological Brain Features

被引:50
作者
Zheng, Weihao [1 ]
Yao, Zhijun [1 ]
Xie, Yuanwei [1 ]
Fan, Jin [3 ,4 ,5 ,6 ]
Hu, Bin [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, 222 Tianshui South Rd, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Gansu Prov Key Lab Wearable Comp, Lanzhou, Gansu, Peoples R China
[3] CUNY Queens Coll, Dept Psychol, Queens, NY 11367 USA
[4] CUNY Queens Coll, Dept Neurosci, A310 Sci Bldg,65-30 Kissena Blvd, Queens, NY 11367 USA
[5] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
AD; Alzheimer's disease; Classification; MCI; MFN; Mild cognitive impairment; Multifeature-based network; Sparse linear regression; Structural brain markers; GRAY-MATTER LOSS; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; FUNCTIONAL CONNECTIVITY; STRUCTURAL COVARIANCE; CEREBRAL-CORTEX; MCI PATIENTS; SELECTION; ATROPHY; CLASSIFICATION;
D O I
10.1016/j.bpsc.2018.06.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Structural brain markers are important for characterizing the pathology of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Here, we constructed a multifeature-based network (MFN) for each individual using a sparse linear regression performed on six types of morphological features to promote the structure-based autodiagnosis. The categorization performance of the MFN was evaluated in 165 normal control subjects, 221 patients with MCI, and 142 patients with AD. We achieved 96.42% and 96.37% accuracy, respectively, in distinguishing the patients with AD and MCI from the normal control subjects, and reasonable discrimination of the two disease cohorts (70.52%) and prediction of the MCI to AD progression (65.61%). The performance was further improved by combining the properties of the MFN with the morphological features. Our results demonstrate the effectiveness of the MFN in combination with morphological features obtained from single imaging modality, serving as robust biomarkers in the diagnosis of AD and MCI.
引用
收藏
页码:887 / 897
页数:11
相关论文
共 84 条
[1]  
Alzheimer's Association, 2016, Alzheimers Dement, V12, P459
[2]   In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease [J].
Baron, JC ;
Chételat, G ;
Desgranges, B ;
Perchey, G ;
Landeau, B ;
de la Sayette, V ;
Eustache, F .
NEUROIMAGE, 2001, 14 (02) :298-309
[3]   Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment [J].
Binnewijzend, Maja A. A. ;
Schoonheim, Menno M. ;
Sanz-Arigita, Ernesto ;
Wink, Alle Meije ;
van der Flier, Wiesje M. ;
Tolboom, Nelleke ;
Adriaanse, Sofie M. ;
Damoiseaux, Jessica S. ;
Scheltens, Philip ;
van Berckel, Bart N. M. ;
Barkhof, Frederik .
NEUROBIOLOGY OF AGING, 2012, 33 (09) :2018-2028
[4]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[5]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[6]   Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: An independent component analysis [J].
Celone, Kim A. ;
Calhoun, Vince D. ;
Dickerson, Bradford C. ;
Atri, Alireza ;
Chua, Elizabeth F. ;
Miller, Saul L. ;
DePeau, Kristina ;
Rentz, Doreen M. ;
Selkoe, Dennis J. ;
Blacker, Deborah ;
Albert, Marilyn S. ;
Sperling, Reisa A. .
JOURNAL OF NEUROSCIENCE, 2006, 26 (40) :10222-10231
[7]   Rates of global and regional cerebral atrophy in AD and frontotemporal dementia [J].
Chan, D ;
Fox, NC ;
Jenkins, R ;
Scahill, RI ;
Crum, WR ;
Rossor, MN .
NEUROLOGY, 2001, 57 (10) :1756-1763
[8]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[9]   Classification of Alzheimer Disease, Mild Cognitive Impairment, and Normal Cognitive Status with Large-Scale Network Analysis Based on Resting-State Functional MR Imaging [J].
Chen, Gang ;
Ward, B. Douglas ;
Xie, Chunming ;
Li, Wenjun ;
Wu, Zhilin ;
Jones, Jennifer L. ;
Franczak, Malgorzata ;
Antuono, Piero ;
Li, Shi-Jiang .
RADIOLOGY, 2011, 259 (01) :213-221
[10]   Domain Transfer Learning for MCI Conversion Prediction [J].
Cheng, Bo ;
Liu, Mingxia ;
Zhang, Daoqiang ;
Munsell, Brent C. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) :1805-1817