Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications

被引:113
作者
Selvan, N. Tamil [1 ,2 ]
Eshwaran, S. B. [1 ,3 ]
Das, A. [1 ,4 ]
Stoeckelhuber, K. W. [1 ]
Wiessner, S. [1 ,3 ]
Poetschke, P. [1 ]
Nando, G. B. [2 ]
Chervanyov, A. I. [5 ]
Heinrich, G. [1 ,3 ]
机构
[1] Leibniz Inst Polymerforsch Dresden eV, D-01069 Dresden, Germany
[2] Indian Inst Technol, Ctr Rubber Technol, Kharagpur 721302, W Bengal, India
[3] Tech Univ Dresden, Inst Werkstoffwissensch, D-01062 Dresden, Germany
[4] Tech Univ Tampere, Tampere 33101, Finland
[5] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
Sensor rubber filler strain nano-composite conductivity; ELECTRICAL-CONDUCTIVITY; PERCOLATION THRESHOLDS; POLYMER NANOCOMPOSITES; COMPRESSIVE STRAIN; BEHAVIOR; COMPOSITES; RESISTANCE; TRANSPORT; BLACK; DAMAGE;
D O I
10.1016/j.sna.2016.01.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We explore, both experimentally and theoretically, the possibility to use a composite of natural rubber (NR) and multiwall carbon nanotubes (MWCNT) as a piezoresistive tensile sensor. As an essentially new feature relative to the previous work, we have performed a systematic study of the mechanism of the piezoresistance at large deformations in a wide range of MWCNT concentrations and crosslinking degrees of the host rubber material. In qualitative agreement with the previous work, the conductivity of the unstrained NR/MWCNT nanocomposite is shown to be adequately described by the percolation theory with the critical exponent evaluated to similar to 2.31. Varying tensile stress-induced strains in the composite has been shown to results in a non-linear electrical response that cannot be described by simple modifications of the percolation theory. In order to explain the observed non-linear dependence of the resistance R of the composite on the strain epsilon, we have developed a scaling theory that relates this resistance to the structural changes in the conducting MWCNT network caused by deforming the host NR. Based on the obtained results, we discuss the ways of using the highly stretchable conductive elastomer composites as an efficient piezoresistive tensile sensor. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 113
页数:12
相关论文
共 55 条
  • [31] Logan B.E., 2012, Environmental transport processes
  • [32] Butadiene acrylonitrile rubber loaded fast extrusion furnace black as a compressive strain and pressure sensors
    Mahmoud, Waleed E.
    El-Lawindy, A. M. Y.
    El Eraki, M. H.
    Hassan, H. H.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2007, 136 (01) : 229 - 233
  • [33] A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: Electrical and thermo-mechanical properties
    Maiti, S.
    Shrivastava, N. K.
    Suin, S.
    Khatua, B. B.
    [J]. EXPRESS POLYMER LETTERS, 2013, 7 (06): : 505 - 518
  • [34] Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits
    Mikrajuddin, A
    Shi, FG
    Kim, HK
    Okuyama, K
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 1999, 2 (04) : 321 - 327
  • [35] IMPURITY CONDUCTION AT LOW CONCENTRATIONS
    MILLER, A
    ABRAHAMS, E
    [J]. PHYSICAL REVIEW, 1960, 120 (03): : 745 - 755
  • [36] Mott N. F., 1968, Journal of Non-Crystalline Solids, V1, P1, DOI 10.1016/0022-3093(68)90002-1
  • [37] Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field
    Oliva-Aviles, A. I.
    Aviles, F.
    Sosa, V.
    [J]. CARBON, 2011, 49 (09) : 2989 - 2997
  • [38] QURESHI EM, 2015, INT J CONTROL AUTOM, V8, P121, DOI DOI 10.14257/ijca.2015.8.6.13
  • [39] Critical behavior of the electrical transport properties in a tunneling-percolation system
    Rubin, Z
    Sunshine, SA
    Heaney, MB
    Bloom, I
    Balberg, I
    [J]. PHYSICAL REVIEW B, 1999, 59 (19) : 12196 - 12199
  • [40] The deformation behavior of conductivity in composites where charge carrier transport is by tunneling:: theoretical modeling and experimental results
    Ryvkina, N
    Tchmutin, I
    Vilcáková, J
    Pelísková, M
    Sáha, P
    [J]. SYNTHETIC METALS, 2005, 148 (02) : 141 - 146