A hybrid resampling algorithms SMOTE and ENN based deep learning models for identification of Marburg virus inhibitors

被引:6
作者
Kumari, Madhulata [1 ]
Subbarao, Naidu [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Computat & Integrat Sci, New Delhi 110067, India
关键词
ANN; artificial neural network; CNN; convolutional neural network; ENN; edited nearest neighbor; marburg virus; oversampling; resampling methods; SMOTE; synthetic minority oversampling technique; undersampling; NEURAL-NETWORK; TREATING EBOLA; DISEASE; ENTRY;
D O I
10.4155/fmc-2021-0290
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: Marburg virus (MARV) is a sporadic outbreak of a zoonotic disease that causes lethal hemorrhagic fever in humans. We propose a deep learning model with resampling techniques and predict the inhibitory activity of MARV from unknown compounds in the virtual screening process. Methodology & results: We applied resampling techniques to solve the imbalanced data problem. The classifier model comparisons revealed that the hybrid model of synthetic minority oversampling technique - edited nearest neighbor and artificial neural network (SMOTE-ENN + ANN) achieved better classification performance with 95% overall accuracy. The trained SMOTE-ENN+ANN hybrid model predicted as lead molecules; 25 out of 87,043 from ChemDiv, four out of 340 from ChEMBL anti-viral library, three out of 918 from Phytochemical database, and seven out of 419 from Natural products from NCI divsetIV, and 214 out of 1,12,267 from Natural compounds ZINC database for MARV. Conclusion: Our studies reveal that the proposed SMOTE-ENN + ANN hybrid model can improve overall accuracy more effectively and predict new lead molecules against MARV.
引用
收藏
页码:701 / 715
页数:15
相关论文
共 61 条
[1]   Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research [J].
Agatonovic-Kustrin, S ;
Beresford, R .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2000, 22 (05) :717-727
[2]   Marburgvirus Resurgence in Kitaka Mine Bat Population after Extermination Attempts, Uganda [J].
Amman, Brian R. ;
Nyakarahuka, Luke ;
McElroy, Anita K. ;
Dodd, Kimberly A. ;
Sealy, Tara K. ;
Schuh, Amy J. ;
Shoemaker, Trevor R. ;
Balinandi, Stephen ;
Atimnedi, Patrick ;
Kaboyo, Winyi ;
Nichol, Stuart T. ;
Towner, Jonathan S. .
EMERGING INFECTIOUS DISEASES, 2014, 20 (10) :1761-1764
[3]   Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors [J].
Anantpadma, Manu ;
Kouznetsova, Jennifer ;
Wang, Hang ;
Huang, Ruili ;
Kolokoltsov, Andrey ;
Guha, Rajarshi ;
Lindstrom, Aaron R. ;
Shtanko, Olena ;
Simeonov, Anton ;
Maloney, David J. ;
Maury, Wendy ;
LaCount, Douglas J. ;
Jadhav, Ajit ;
Davey, Robert A. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (08) :4471-4481
[4]  
Baldi P., 2013, Advances in Neural Information Processing Systems, V2, P2814
[5]  
Banadkooki FB, 2020, ENVIRON SCI POLLUT R, V27, P38094, DOI 10.1007/s11356-020-09876-w
[6]  
Batista GE., 2004, ACM SIGKDD EXPLOR NE, V6, P20, DOI [DOI 10.1145/1007730.1007735, 10.1145/1007730.1007735, 10.1145/1007730.1007735.2]
[7]   Identification of a Selective G1-Phase Benzimidazolone Inhibitor by a Senescence-Targeted Virtual Screen Using Artificial Neural Networks [J].
Bilsland, Alan E. ;
Pugliese, Angelo ;
Liu, Yu ;
Revie, John ;
Burns, Sharon ;
McCormick, Carol ;
Cairney, Claire J. ;
Bower, Justin ;
Drysdale, Martin ;
Narita, Masashi ;
Sadaie, Mahito ;
Keith, W. Nicol .
NEOPLASIA, 2015, 17 (09) :704-715
[8]  
Boureau Y. -L., 2010, A theoretical analysis of feature pooling in visual recognition, P111
[9]  
Bourquin J, 1997, Pharm Dev Technol, V2, P95, DOI 10.3109/10837459709022615
[10]   Forty-Five Years of Marburg Virus Research [J].
Brauburger, Kristina ;
Hume, Adam J. ;
Muehlberger, Elke ;
Olejnik, Judith .
VIRUSES-BASEL, 2012, 4 (10) :1878-1927