A Dynamic Logic for Learning Theory

被引:4
作者
Baltag, Alexandru [1 ]
Gierasimczuk, Nina [2 ]
Ozgun, Aybuke [1 ,3 ]
Sandoval, Ana Lucia Vargas [1 ]
Smets, Sonja [1 ]
机构
[1] Univ Amsterdam, ILLC, Amsterdam, Netherlands
[2] Tech Univ Denmark, DTU Compute, Copenhagen, Denmark
[3] Univ Lorraine, LORIA, CNRS, Nancy, France
来源
DYNAMIC LOGIC: NEW TRENDS AND APPLICATIONS | 2018年 / 10669卷
基金
欧洲研究理事会;
关键词
Learning theory; Dynamic epistemic logic; Modal Logic; Subset Space Semantics; Inductive knowledge; Epistemology;
D O I
10.1007/978-3-319-73579-5_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Building on previous work [4,5] that bridged Formal Learning Theory and Dynamic Epistemic Logic in a topological setting, we introduce a Dynamic Logic for Learning Theory (DLLT), extending Subset Space Logics [9,17] with dynamic observation modalities [o]phi, as well as with a learning operator L((o) over right arrow), which encodes the learner's conjecture after observing a finite sequence of data (o) over right arrow. We completely axiomatise DLLT, study its expressivity and use it to characterise various notions of knowledge, belief, and learning.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 25 条
[1]  
Aiello M, 2007, HANDBOOK OF SPATIAL LOGICS, P1, DOI 10.1007/978-1-4020-5587-4
[2]  
[Anonymous], 1989, Topology via logic
[3]  
Balbiani P., 2013, LNCS, P233, DOI DOI 10.1007/978-3-642-36039-821
[4]   'KNOWABLE' AS 'KNOWN AFTER AN ANNOUNCEMENT' [J].
Balbiani, Philippe ;
Baltag, Alexandru ;
Van Ditmarsch, Hans ;
Herzig, Andreas ;
Hoshi, Tomohiro ;
De Lima, Tiago .
REVIEW OF SYMBOLIC LOGIC, 2008, 1 (03) :305-334
[5]  
Baltag A., 2015, TECHNICAL REPORT ILL
[6]  
Baltag A., 2011, P TARK 2011, P187
[7]  
Baltag A., 1998, P 7 C THEOR ASP RAT, P43
[8]   Topo-Logic as a Dynamic-Epistemic Logic [J].
Baltag, Alexandru ;
Ozgun, Aybuke ;
Sandoval, Ana Lucia Vargas .
LOGIC, RATIONALITY, AND INTERACTION, LORI 2017, 2017, 10455 :330-346
[9]  
Bjorndahl Adam, 2016, TRENDS LOGIC OUTSTAN
[10]   Topological reasoning and the logic of knowledge [J].
Dabrowski, A ;
Moss, LS ;
Parikh, R .
ANNALS OF PURE AND APPLIED LOGIC, 1996, 78 (1-3) :73-110