Opi1p, Ume6p and Sin3p control expression from the promoter of the INO2 regulatory gene via a novel regulatory cascade

被引:10
作者
Kaadige, MR [1 ]
Lopes, JM [1 ]
机构
[1] Wayne State Univ, Dept Biol Sci, Detroit, MI 48202 USA
关键词
D O I
10.1046/j.1365-2958.2003.03472.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p-mediated repression and Ume6p-mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2-HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild-type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1,2,3) of the ume6Delta mutation that overexpress the INO2-HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6 Delta mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Delta and rpd3Delta mutants on INO2-cat expression. Surprisingly, the sin3Delta allele overexpressed INO2-cat , whereas the rpd3Delta mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1-cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.
引用
收藏
页码:823 / 832
页数:10
相关论文
共 52 条
[1]   UME6, A NEGATIVE REGULATOR OF MEIOSIS IN SACCHAROMYCES-CEREVISIAE, CONTAINS A C-TERMINAL ZN(2)CYS(6) BINUCLEAR CLUSTER THAT BINDS THE URS1 DNA-SEQUENCE IN A ZINC-DEPENDENT MANNER [J].
ANDERSON, SF ;
STEBER, CM ;
ESPOSITO, RE ;
COLEMAN, JE .
PROTEIN SCIENCE, 1995, 4 (09) :1832-1843
[2]  
ASHBURNER BP, 1995, MOL CELL BIOL, V15, P1709
[3]   REGULATION OF YEAST PHOSPHOLIPID BIOSYNTHETIC GENE-EXPRESSION IN RESPONSE TO INOSITOL INVOLVES 2 SUPERIMPOSED MECHANISMS [J].
ASHBURNER, BP ;
LOPES, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (21) :9722-9726
[4]   FUNCTIONAL-CHARACTERIZATION OF AN INOSITOL-SENSITIVE UPSTREAM ACTIVATION SEQUENCE IN YEAST - A CIS-REGULATORY ELEMENT RESPONSIBLE FOR INOSITOL-CHOLINE MEDIATED REGULATION OF PHOSPHOLIPID BIOSYNTHESIS [J].
BACHHAWAT, N ;
OUYANG, QA ;
HENRY, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :25087-25095
[5]   Genomewide studies of histone deacetylase function in yeast [J].
Bernstein, BE ;
Tong, JK ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13708-13713
[6]   IN02, a positive regulator of lipid biosynthesis, is essential for the formation of inducible membranes in yeast [J].
Block-Alper, L ;
Webster, P ;
Zhou, XH ;
Supeková, L ;
Wong, WH ;
Schultz, PG ;
Meyer, DI .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (01) :40-51
[7]  
BOWDISH KS, 1995, MOL CELL BIOL, V15, P2955
[8]   Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes [J].
Carman, GM ;
Henry, SA .
PROGRESS IN LIPID RESEARCH, 1999, 38 (5-6) :361-399
[9]  
COK SJ, 1998, NUCLEIC ACIDS RES, V23, P1426
[10]  
DONAHUE TF, 1981, GENETICS, V98, P491