Energy landscape statistics of the random orthogonal model

被引:1
|
作者
Esposti, MD [1 ]
Giardinà, C [1 ]
Graffi, S [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
来源
关键词
D O I
10.1088/0305-4470/36/12/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The random orthogonal model (ROM) of Marinari-Parisi-Ritort [13, 14] is a model of statistical mechanics where the couplings among the spins are defined by a matrix chosen randomly within the orthogonal ensemble.. It reproduces the most relevant properties of the Parisi solution of the Sherrington-Kirkpatrick model. Here we compute the energy distribution, and work out an estimate for the two-point correlation function. Moreover, we show an exponential increase with the system size of the number of metastable states also for non-zero magnetic field.
引用
收藏
页码:2983 / 2994
页数:12
相关论文
共 50 条
  • [21] Landscape statistics of the rho-spin Ising model
    De, Oliveira, V. M.
    Fontanari, J. F.
    Journal of Physics A: Mathematical and General, 30 (24):
  • [22] Landscape statistics of the p-spin Ising model
    de Oliveira, VM
    Fontanari, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8445 - 8457
  • [23] Energy landscape of a model protein
    Miller, MA
    Wales, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (14): : 6610 - 6616
  • [24] The number of metastable states in the generalized random orthogonal model
    Cherrier, R
    Dean, DS
    Lefèvre, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (14): : 3935 - 3945
  • [25] Phase transition in a random NK landscape model
    Choi, Sung-Soon
    Jung, Kyomin
    Kim, Jeong Han
    GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 1241 - 1248
  • [26] Phase transition in a random NK landscape model
    Choi, Sung-Soon
    Jung, Kyomin
    Kim, Jeong Han
    ARTIFICIAL INTELLIGENCE, 2008, 172 (2-3) : 179 - 203
  • [27] Percolation approach to correlated hopping in a random energy landscape
    Cordes, H
    Baranovskii, SD
    Greif, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 230 (01): : 243 - 247
  • [28] Organic glasses: cluster structure of the random energy landscape
    Novikov, Sergey V.
    ANNALEN DER PHYSIK, 2009, 18 (12) : 949 - 953
  • [29] Random-energy model in random fields
    de Oliveira Filho, Luiz O.
    da Costa, Francisco Alexandre
    Yokoi, Carlos S. O.
    PHYSICAL REVIEW E, 2006, 74 (03):
  • [30] Model for a random-matrix description of the energy-level statistics of disordered systems at the Anderson transition
    Canali, CM
    PHYSICAL REVIEW B, 1996, 53 (07): : 3713 - 3730