Energy landscape statistics of the random orthogonal model

被引:1
|
作者
Esposti, MD [1 ]
Giardinà, C [1 ]
Graffi, S [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40127 Bologna, Italy
来源
关键词
D O I
10.1088/0305-4470/36/12/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The random orthogonal model (ROM) of Marinari-Parisi-Ritort [13, 14] is a model of statistical mechanics where the couplings among the spins are defined by a matrix chosen randomly within the orthogonal ensemble.. It reproduces the most relevant properties of the Parisi solution of the Sherrington-Kirkpatrick model. Here we compute the energy distribution, and work out an estimate for the two-point correlation function. Moreover, we show an exponential increase with the system size of the number of metastable states also for non-zero magnetic field.
引用
收藏
页码:2983 / 2994
页数:12
相关论文
共 50 条
  • [1] Statistics of the number of minima in a random energy landscape
    Majumdar, Satya N.
    Martin, Olivier C.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [2] Energy dissipation statistics in the random fuse model
    Picallo, Clara B.
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2008, 77 (04):
  • [3] Correlated energy landscape model for finite, random heteropolymers
    Plotkin, SS
    Wang, J
    Wolynes, PG
    PHYSICAL REVIEW E, 1996, 53 (06): : 6271 - 6296
  • [4] Statistics of static avalanches in a random pinning landscape
    Le Doussal, Pierre
    Middleton, A. Alan
    Wiese, Kay Joerg
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [5] APPLICATION OF ORTHOGONAL EXPANSIONS OF RANDOM FUNCTIONS TO ANTENNA STATISTICS
    SUKHAREVSKIY, IV
    ZAMYATIN, VI
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1967, 12 (07): : 1117 - +
  • [6] The Energy Landscape of the Kuramoto Model in Random Geometric Graphs in a Circle
    De Vita, Cecilia
    Bonder, Julian Fernandez
    Groisman, Pablo
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 1 - 15
  • [7] Energy landscape picture of supercooled liquids: Application of a generalized random energy model
    Sasai, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (23): : 10651 - 10662
  • [8] Universality of AC conductivity: Random site-energy model with Fermi statistics
    Pasveer, W. F.
    Bobbert, P. A.
    Michels, M. A. J.
    PHYSICAL REVIEW B, 2006, 74 (16):
  • [9] Critical weight statistics of the random energy model and of the directed polymer on the Cayley tree
    Monthus, Cecile
    Garel, Thomas
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [10] DISTURBING THE RANDOM-ENERGY LANDSCAPE
    HALPINHEALY, T
    HERBERT, D
    PHYSICAL REVIEW E, 1993, 48 (03) : R1617 - R1619