Classifying the content of social media images to support cultural ecosystem service assessments using deep learning models

被引:35
作者
Cardoso, Ana Sofia [1 ,2 ,3 ]
Renna, Francesco [4 ]
Moreno-Llorca, Ricardo [5 ]
Alcaraz-Segura, Domingo [5 ,6 ,7 ]
Tabik, Siham [8 ,9 ]
Ladle, Richard J. [1 ,2 ,3 ,10 ]
Sofia Vaz, Ana [1 ,2 ,3 ]
机构
[1] CIBIO, Ctr Invest Biodiversidade Recursos Gen, InBIO Lab Associado, Campus Vairao, P-4485661 Porto, Portugal
[2] Univ Porto, Dept Biol, Fac Ciencias, P-4099002 Porto, Portugal
[3] CIBIO, BIOPOLIS Program Genom, Biodivers & Land Planning, Campus Vairao, P-4485661 Vairao, Portugal
[4] Univ Porto, Inst Telecomunicacoes, Fac Ciencias, Rua Campo Alegre, Porto, Portugal
[5] Univ Granada, Andalusian Inter Univ Inst Earth Syst Res IISTA, iEcolab, Avda Mediterraneo S N, Granada 18006, Spain
[6] Univ Granada, Fac Ciencias, Dpto Botan, Av Fuentenueva S N, Granada 18003, Spain
[7] Univ Almeria, Andalusian Ctr Assessment & Monitoring Global, Crta San Urbano S-N, Almeria 04120, Spain
[8] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain
[9] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Dept Comp Sci & Artificial Intelligence, DaSCI, Granada 18071, Spain
[10] Univ Fed Alagoas, Inst Biol Sci & Hlth, Maceio, Alagoas, Brazil
关键词
Computer vision; Convolutional neural networks; Culturomics; iEcology; Nature contributions to people; Transfer learning; PROTECTED AREA; CONSERVATION; IDENTIFICATION; PERCEPTIONS; BUTTERFLIES; FRAMEWORK;
D O I
10.1016/j.ecoser.2022.101410
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Crowdsourced social media data has become popular for assessing cultural ecosystem services (CES). Nevertheless, social media data analyses in the context of CES can be time consuming and costly, particularly when based on the manual classification of images or texts shared by people. The potential of deep learning for automating the analysis of crowdsourced social media content is still being explored in CES research. Here, we use freely available deep learning models, i.e., Convolutional Neural Networks, for automating the classification of natural and human (e.g., species and human structures) elements relevant to CES from Flickr and Wikiloc images. Our approach is developed for Peneda-Ger <^>es (Portugal) and then applied to Sierra Nevada (Spain). For Peneda-Ger <^>es, image classification showed promising results (F1-score ca. 80%), highlighting a preference for aesthetics appreciation by social media users. In Sierra Nevada, even though model performance decreased, it was still satisfactory (F1-score ca. 60%), indicating a predominance of people's pursuit for cultural heritage and spiritual enrichment. Our study shows great potential from deep learning to assist in the automated classification of human-nature interactions and elements from social media content and, by extension, for supporting researchers and stakeholders to decode CES distributions, benefits, and values.
引用
收藏
页数:10
相关论文
共 65 条
[1]   Automatic identification for field butterflies by convolutional neural networks [J].
Almryad, Ayad Saad ;
Kutucu, Hakan .
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (01) :189-195
[2]  
[Anonymous], 2018, P SEG TECH PROGR AUG, DOI DOI 10.1190/SEGAM2018-2996783.1
[3]   Shades of grey challenge practical application of the cultural ecosystem services concept [J].
Blicharska, Malgorzata ;
Smithers, Richard J. ;
Hedblom, Marcus ;
Hedenas, Henrik ;
Mikusinski, Grzegorz ;
Pedersen, Eja ;
Sandstrom, Per ;
Svensson, Johan .
ECOSYSTEM SERVICES, 2017, 23 :55-70
[4]   Modelling Local Attitudes to Protected Areas in Developing Countries [J].
Bragagnolo, Chiara ;
Malhado, Ana C. M. ;
Jepson, Paul ;
Ladle, Richard J. .
CONSERVATION & SOCIETY, 2016, 14 (03) :163-182
[5]   Crowdsourcing geo-information on landscape perceptions and preferences: A review [J].
Bubalo, Martina ;
van Zanten, Boris T. ;
Verburg, Peter H. .
LANDSCAPE AND URBAN PLANNING, 2019, 184 :101-111
[6]   Convolutional Neural Networks for Multimedia Sentiment Analysis [J].
Cai, Guoyong ;
Xia, Binbin .
NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2015, 2015, 9362 :159-167
[7]   Rethinking ecosystem services to better address and navigate cultural values [J].
Chan, Kai M. A. ;
Satterfield, Terre ;
Goldstein, Joshua .
ECOLOGICAL ECONOMICS, 2012, 74 :8-18
[8]   Evaluation of cultural ecosystem services: A review of methods [J].
Cheng, Xin ;
Van Damme, Sylvie ;
Li, Luyuan ;
Uyttenhove, Pieter .
ECOSYSTEM SERVICES, 2019, 37
[9]  
Chollet F., 2015, Keras
[10]   Applications for deep learning in ecology [J].
Christin, Sylvain ;
Hervet, Eric ;
Lecomte, Nicolas .
METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (10) :1632-1644