A STOCHASTIC DIFFERENTIAL GAME FOR THE INHOMOGENEOUS ∞-LAPLACE EQUATION

被引:15
作者
Atar, Rami [1 ]
Budhiraja, Amarjit [2 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
关键词
Stochastic differential games; infinity-Laplacian; Bellman-Isaacs equation; EXISTENCE; CURVATURE;
D O I
10.1214/09-AOP494
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given a bounded C(2) domain G subset of R(m), functions g is an element of C(partial derivative G, R) and h is an element of C((G) over bar, R backslash {0}), let u denote the unique viscosity solution to the equation -2 Delta(infinity)u = h in G with boundary data g. We provide a representation for u as the value of a two-player zero-sum stochastic differential game.
引用
收藏
页码:498 / 531
页数:34
相关论文
共 12 条
[1]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[2]   MATHEMATICAL-MODEL IN SAND MECHANICS - PRESENTATION AND ANALYSIS [J].
ARONSSON, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (03) :437-&
[3]  
ATAR R, 2008, T AM MATH SOC, V360, P77
[4]  
BARRON EN, 2009, INFINITY LAPLACIAN A
[5]  
CRANDALL MG, 1999, ELECT DIFFERENTIAL E, V24
[6]  
Ethier S. N., 2005, WILEY SERIES PROBABI
[7]   ON THE EXISTENCE OF VALUE-FUNCTIONS OF 2-PLAYER, ZERO-SUM STOCHASTIC DIFFERENTIAL-GAMES [J].
FLEMING, WH ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (02) :293-314
[8]   UNIQUENESS OF LIPSCHITZ EXTENSIONS - MINIMIZING THE SUP NORM OF THE GRADIENT [J].
JENSEN, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) :51-74
[9]   A deterministic-control-based approach to motion by curvature [J].
Kohn, RV ;
Serfaty, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :344-407
[10]  
Peres Y, 2009, J AM MATH SOC, V22, P167