Growing bulk-like 3C-SiC from seeding material produced by CVD

被引:3
作者
Schuh, P. [1 ]
Arzig, M. [1 ]
Litrico, G. [2 ,3 ]
La Via, F. [3 ]
Mauceri, M. [4 ]
Wellmann, P. J. [1 ]
机构
[1] FAU Erlangen Nurnberg, Mat Dept I Meet 6, Crystal Growth Lab, Martensstr 7, D-91058 Erlangen, Germany
[2] Lab Nazl Sud, Via S Sofia 62, I-95123 Catania, Italy
[3] IMM CNR, 8 Str 5, I-95121 Catania, Italy
[4] ETC Epitaxial Technol Ctr, 16a Str Pantano dArci, I-95121 Catania, Italy
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 04期
基金
欧盟地平线“2020”;
关键词
3C-SiC; bulk crystals; layer transfer; physical vapor transport; GROWTH; FILMS;
D O I
10.1002/pssa.201600429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a process to transfer CVD grown heteroepitaxial 3C-SiC on Si onto polycrystalline SiC, involving an etching step to get rid of the Si and a homogeneous carbon glue deposit, facilitating the resulting compound to be used as a seeding material for further growth process. In a sublimation sandwich setup, realized within an inductively heated physical vapor transport reactor, used for bulk growth of SiC, the thickness of the 3C-SiC seed was increased up to 850 mm while keeping the cubic polytype. With the introduction of Ta as a carbon getter, the gas phase composition is optimized in order to achieve an improved growth front. Single crystalline growth is confirmed by Laue diffraction and Raman measurements. The Raman peaks are shifted to higher wavenumbers, indicating compressive stress in the grown samples. Furthermore, a scale up of the process is demonstrated, showing the feasibility of growing 3C-SiC on an area of 10.5 cm(2) in a 2 inch setup featuring a thickness of approximately 570 mu m. (C) 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页数:6
相关论文
共 13 条
[1]  
Chung GS, 2007, B KOR CHEM SOC, V28, P533
[2]   RAMAN-SCATTERING STUDIES OF CHEMICAL-VAPOR-DEPOSITED CUBIC SIC FILMS OF (100) SI [J].
FENG, ZC ;
MASCARENHAS, AJ ;
CHOYKE, WJ ;
POWELL, JA .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (06) :3176-3186
[3]  
Frazier B. W., 1893, J FRANKLIN I, V175, P287
[4]   Polycrystalline SiC as source material for the growth of fluorescent SiC layers [J].
Kaiser, Michl ;
Hupfer, Thomas ;
Jokubavicus, Valdas ;
Schimmel, Saskia ;
Syvajarvi, Mikael ;
Ou, Yiyu ;
Ou, Haiyan ;
Linnarsson, Margareta K. ;
Wellmann, Peter .
SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 :39-+
[5]   AN EXAMINATION OF DOUBLE POSITIONING BOUNDARIES AND INTERFACE MISFIT IN BETA-SIC FILMS ON ALPHA-SIC SUBSTRATES [J].
KONG, HS ;
JIANG, BL ;
GLASS, JT ;
ROZGONYI, GA ;
MORE, KL .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (08) :2645-2650
[6]  
Levinshtein M., 1996, HDB SERIES SEMICONDU, V2
[7]  
Levinshtein ME, 2001, Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe
[8]  
Madelung O., 2004, SEMICONDUCTOR DATA H
[9]   PRESSURE-DEPENDENCE OF THE OPTICAL PHONONS AND TRANSVERSE EFFECTIVE CHARGE IN 3C-SIC [J].
OLEGO, D ;
CARDONA, M ;
VOGL, P .
PHYSICAL REVIEW B, 1982, 25 (06) :3878-3888
[10]  
Richards B. S., 2003, 3 WORLD C PHOT EN CO