In this paper, we investigate the maximum number of electrons that can be bound to a system of nuclei modelled by Hartree-Fock theory. We consider both the Restricted and Unrestricted Hartree-Fock models. We are taking a non-existence approach (necessary but not sufficient), in other words we are finding an upper bound on the maximum number of electrons. In giving a detailed account of the proof of Lieb's bound [Theorem 1, Phys. Rev. A 29 (1984), 3018] for the Hartree-Fock models we establish several new auxiliary results, furthermore we propose a condition that, if satisfied, will give an improved upper bound on the maximum number of electrons within the Restricted Hartree-Fock model. For two-electron atoms we show that the latter condition holds.
机构:
Univ Paris 09, CEREMADE, UMR CNRS 7534, Pl Lattre de Tassigny, F-75775 Paris 16, FranceUniv Paris 09, CEREMADE, UMR CNRS 7534, Pl Lattre de Tassigny, F-75775 Paris 16, France
机构:
Univ Paris 09, CNRS, PSL Res Univ, F-75016 Paris, France
Univ Paris 09, CEREMADE, PSL Res Univ, F-75016 Paris, FranceUniv Paris 09, CNRS, PSL Res Univ, F-75016 Paris, France