Vertically Aligned Sulfiphilic Cobalt Disulfide Nanosheets Supported on a Free-Standing Carbon Nanofiber Interlayer for High-Performance Lithium-Sulfur Batteries

被引:6
作者
Yoon, Hyunseok [1 ]
Park, Dongjoo [1 ]
Song, Hee Jo [1 ]
Park, Sangbaek [2 ]
Kim, Dong-Wan [1 ]
机构
[1] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Ctr Energy Mat Res, Seoul 02792, South Korea
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2021年 / 9卷 / 25期
基金
新加坡国家研究基金会;
关键词
cobalt disulfide; vertical nanosheet; carbon nano fiber; interlayer; lithium-sulfur battery; EFFICIENT; HYDROGEN; POLYSULFIDES; ELECTROCATALYSTS; HETEROSTRUCTURES; NANOPARTICLES; CONVERSION; HYDROXIDE; ARRAYS;
D O I
10.1021/acssuschemeng.1c01494
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries (LSBs) are considered as a potential candidate for replacing lithium-ion batteries (LIBs), owing to their high theoretical energy density and low cost. However, the practical development of LSBs is considerably impeded, owing to the shuttling effect caused by soluble lithium polysulfide. Herein, we report porous cobalt disulfide (CoS2) nanosheets vertically grown on activated cellulose-derived carbon nanofibers (CoS2/ACCF) as an excellent interlayer for LSBs. The vertically arranged two-dimensional (2D) CoS2 nanosheets maximized the reactive surface area exposed to the electrolyte. In addition, each CoS2 nanosheet has a unique porous and crystalline structure comprising numerous nanograins encapsulated by carbon, which induces excellent electrical conductivity and stability. Benefiting from its novel architecture, CoS2/ACCF provides superior high-rate performance (815 mA h g(-1) at 2C) in LSBs. Furthermore, electrochemical impedance spectroscopy studies proved that CoS2/ACCF accelerated the interfacial reaction kinetics through highly exposed active sites on vertical 2D nanosheets, resulting reversible and stable long-term cycling performance (982 mA h g(-1) after 100 cycles at 0.1C and 580 mA h g(-1) after 500 cycles at 1C). Therefore, this work suggests a new strategy to design an effective interlayer through a facile and cost-effective method for the commercialization of LSBs.
引用
收藏
页码:8487 / 8496
页数:10
相关论文
共 57 条
[1]   Cobalt-carbon/silica nanocomposites prepared by pyrolysis of a cobalt 2,2′-bipyridine terephthalate complex for remediation of cationic dyes [J].
Alotaibi, Nusaybah ;
Hammud, Hassan H. ;
Karnati, Ranjith Kumar ;
Hussain, Syed Ghazanfar ;
Mazher, Javed ;
Prakasam, Thirumurugan .
RSC ADVANCES, 2020, 10 (30) :17660-17672
[2]   Single-step microwave mediated synthesis of the CoS2 anode material for high rate hybrid supercapacitors [J].
Amaresh, S. ;
Karthikeyan, K. ;
Jang, I. -C. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) :11099-11106
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy [J].
Canas, Natalia A. ;
Hirose, Kei ;
Pascucci, Brigitta ;
Wagner, Norbert ;
Friedrich, K. Andreas ;
Hiesgen, Renate .
ELECTROCHIMICA ACTA, 2013, 97 :42-51
[5]   Flower-like CoP microballs assembled with (002) facet nanowires via precursor route: Efficient electrocatalysts for hydrogen and oxygen evolution [J].
Cao, Hongshuai ;
Xie, Ying ;
Wang, Honglei ;
Xiao, Fang ;
Wu, Aiping ;
Li, Lin ;
Xu, Zhikun ;
Xiong, Ni ;
Pan, Kai .
ELECTROCHIMICA ACTA, 2018, 259 :830-840
[6]   Vertical 2D MoO2/MoSe2 Core-Shell Nanosheet Arrays as High-Performance Electrocatalysts for Hydrogen Evolution Reaction [J].
Chen, Xiaoshuang ;
Liu, Guangbo ;
Zheng, Wei ;
Feng, Wei ;
Cao, Wenwu ;
Hu, Wenping ;
Hu, PingAn .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (46) :8537-8544
[7]   Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping [J].
Chen, Xin ;
Peng, Linfeng ;
Wang, Lihui ;
Yang, Jiaqiang ;
Hao, Zhangxiang ;
Xiang, Jingwei ;
Yuan, Kai ;
Huang, Yunhui ;
Shan, Bin ;
Yuan, Lixia ;
Xie, Jia .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading [J].
Deng, Zhaofeng ;
Zhang, Zhian ;
Lai, Yanqing ;
Liu, Jin ;
Li, Jie ;
Liu, Yexiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A553-A558
[9]   Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells [J].
Faber, Matthew S. ;
Park, Kwangsuk ;
Caban-Acevedo, Miguel ;
Santra, Pralay K. ;
Jin, Song .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (11) :1843-1849
[10]   Interlayer Material Selection for Lithium-Sulfur Batteries [J].
Fan, Linlin ;
Li, Matthew ;
Li, Xifei ;
Xiao, Wei ;
Chen, Zhongwei ;
Lu, Jun .
JOULE, 2019, 3 (02) :361-386