Effect of interfacial layer on device performance of metal oxide thin-film transistor with a multilayer high-k gate stack

被引:19
作者
Ruan, Dun-Bao [1 ,2 ]
Liu, Po-Tsun [3 ,4 ]
Chiu, Yu-Chuan [3 ,4 ]
Kuo, Po-Yi [3 ,4 ]
Yu, Min-Chin [3 ,4 ]
Kan, Kai-Zhi [1 ,2 ]
Chien, Ta-Chun [3 ,4 ]
Chen, Yi-Heng [3 ,4 ]
Sze, Simon M. [1 ,2 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
[2] Natl Chiao Tung Univ, Inst Elect, Hsinchu 30010, Taiwan
[3] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[4] Natl Chiao Tung Univ, Inst Electroopt Engn, Hsinchu 30010, Taiwan
关键词
Indium-gallium-zinc-oxide; Thin-film transistors; Multilayer high-k; Low temperature process; Interfacial layer engineering; SEMICONDUCTOR;
D O I
10.1016/j.tsf.2018.05.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The amorphous indium gallium zinc oxide thin-film transistors (TFTs) with a multilayer high-k gate stack are investigated in this research. In order to achieve a high quality gate insulator for plastic flexible display application, the multilayer high-k gate stacks (SiO2/TiO2/HfO2) are deposited by a low-temperature physical vapor deposition (PVD) process. On the other hands, an interfacial layer between the high-k stack and metal oxide channel is important for the device performance. The effects of interfacial layer material (SiO2 or Ga2O3) are also discussed in this report. The devices with SiO2 interfacial layer show a high on/off current ratio of similar to 7x10(7) for its low gate leakage current, a small sub-threshold swing of 0.093 V/decade and a high field-effect mobility of similar to 37.8 cm(2)/Vs for its good interface condition and low interface defeats. This research shows that the interface engineering of multilayer PVD gate stacks is necessary for oxide TFT fabrication.
引用
收藏
页码:578 / 584
页数:7
相关论文
共 19 条
[1]   Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure [J].
Chang, Seongpil ;
Song, Yong-Won ;
Lee, Sanggyu ;
Lee, Sang Yeol ;
Ju, Byeong-Kwon .
APPLIED PHYSICS LETTERS, 2008, 92 (19)
[2]   Amorphous InGaZnO Ultraviolet Phototransistors With a Thin Ga2O3 Layer [J].
Chang, Shoou-Jinn ;
Chang, T. H. ;
Weng, W. Y. ;
Chiu, C. J. ;
Chang, S. P. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2014, 20 (06) :125-129
[3]   Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances [J].
Fortunato, E. ;
Barquinha, P. ;
Martins, R. .
ADVANCED MATERIALS, 2012, 24 (22) :2945-2986
[4]   Role of environmental and annealing conditions on the passivation-free in-Ga-Zn-O TFT [J].
Fuh, Chur-Shyang ;
Sze, Simon Min ;
Liu, Po-Tsun ;
Teng, Li-Feng ;
Chou, Yi-Teh .
THIN SOLID FILMS, 2011, 520 (05) :1489-1494
[5]   Two-dimensional numerical simulation of radio frequency sputter amorphous In-Ga-Zn-O thin-film transistors [J].
Fung, Tze-Ching ;
Chuang, Chiao-Shun ;
Chen, Charlene ;
Abe, Katsumi ;
Cottle, Robert ;
Townsend, Mark ;
Kumomi, Hideya ;
Kanicki, Jerzy .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (08)
[6]   Solution-Processed Zirconium Oxide Gate Insulators for Top Gate and Low Operating Voltage Thin-Film Transistor [J].
Gao, Yana ;
Zhang, Jianhua ;
Li, Xifeng .
JOURNAL OF DISPLAY TECHNOLOGY, 2015, 11 (09) :764-767
[7]   Energy band offsets of dielectrics on InGaZnO4 [J].
Hays, David C. ;
Gila, B. P. ;
Pearton, S. J. ;
Ren, F. .
APPLIED PHYSICS REVIEWS, 2017, 4 (02)
[8]   A Flexible IGZO Thin-Film Transistor With Stacked TiO2-Based Dielectrics Fabricated at Room Temperature [J].
Hsu, Hsiao-Hsuan ;
Chang, Chun-Yen ;
Cheng, Chun-Hu .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (06) :768-770
[9]   Present status of amorphous In-Ga-Zn-O thin-film transistors [J].
Kamiya, Toshio ;
Nomura, Kenji ;
Hosono, Hideo .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2010, 11 (04)
[10]   Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J].
Nomura, K ;
Ohta, H ;
Takagi, A ;
Kamiya, T ;
Hirano, M ;
Hosono, H .
NATURE, 2004, 432 (7016) :488-492