The upper limit of a normalized random walk

被引:0
作者
Zhang, Cun-Hui [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
来源
Random Walk, Sequential Analysis and Related Topics: A FESTSCHRIFT IN HONOR OF YUAN-SHIH CHOW | 2006年
关键词
random walk; strong law of large numbers; asymmetric random variables; integral test; law of the iterated logarithm; ladder variables; truncated moment;
D O I
10.1142/9789812772558_0011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the upper limit of S-n/n(1/p) where S-n are partial sums of iid random variables. Under the assumption of E(X+)(P) < infinity, we provide an integral test which determines the upper limit up to certain universal constant factors depending on p only. The problem is closely related to moment properties of ladder variables. We prove our theorem by considering the lower limit of T-k/k(p) where Tk is the k-th epoch of the random walk.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 18 条
[11]   LIMIT POINTS OF A NORMALIZED RANDOM WALK [J].
KESTEN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (04) :1173-&
[12]   PRECISION BOUNDS FOR THE RELATIVE ERROR IN THE APPROXIMATION OF E[SN] AND EXTENSIONS [J].
KLASS, MJ .
ANNALS OF PROBABILITY, 1980, 8 (02) :350-367
[13]   TOWARD A UNIVERSAL LAW OF ITERATED LOGARITHM .2. [J].
KLASS, MJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (02) :151-165
[14]   TOWARD A UNIVERSAL LAW OF ITERATED LOGARITHM .1. [J].
KLASS, MJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (02) :165-178
[15]  
KLASS MJ, 1994, ANN PROBAB, V22, P1857
[16]   ASYMPTOTIC MOMENTS OF RANDOM-WALKS WITH APPLICATIONS TO LADDER VARIABLES AND RENEWAL THEORY [J].
LAI, TL .
ANNALS OF PROBABILITY, 1976, 4 (01) :51-66
[17]   GENERAL ONE-SIDED LAWS OF THE ITERATED LOGARITHM [J].
PRUITT, WE .
ANNALS OF PROBABILITY, 1981, 9 (01) :1-48
[18]   THE LOWER LIMIT OF A NORMALIZED RANDOM-WALK [J].
ZHANG, CH .
ANNALS OF PROBABILITY, 1986, 14 (02) :560-581