Modular categories are not determined by their modular data

被引:15
作者
Mignard, Michael [1 ]
Schauenburg, Peter [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, UMR 5584, Inst Math Bourgogne, F-21000 Dijon, France
关键词
18D10; 16T05; 20C15;
D O I
10.1007/s11005-021-01395-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Arbitrarily many pairwise inequivalent modular categories can share the same modular data. We exhibit a family of examples that are module categories over twisted Drinfeld doubles of finite groups, and thus in particular integral modular categories.
引用
收藏
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1995, Homology, Classics in Mathematics
[2]  
[Anonymous], 1956, Homological Algebra
[3]  
Bakalov B., 2001, U LECT SERIES, V21
[4]  
Brown K.S., 1982, GRADUATE TEXTS MATH, DOI [10.1007/978-1-4684-9327-6, DOI 10.1007/978-1-4684-9327-6]
[5]   RANK-FINITENESS FOR MODULAR CATEGORIES [J].
Bruillard, Paul ;
Ng, Siu-Hung ;
Rowell, Eric C. ;
Wang, Zhenghan .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 29 (03) :857-881
[6]   Finite group modular data [J].
Coste, A ;
Gannon, T ;
Ruelle, P .
NUCLEAR PHYSICS B, 2000, 581 (03) :679-717
[7]   REMARKS ON GALOIS SYMMETRY IN RATIONAL CONFORMAL FIELD-THEORIES [J].
COSTE, A ;
GANNON, T .
PHYSICS LETTERS B, 1994, 323 (3-4) :316-321
[8]  
Davidovich O., 2013, ARITHMETIC MODULAR C
[9]   MARKOV TRACES AND II1-FACTORS IN CONFORMAL FIELD-THEORY [J].
DEBOER, J ;
GOEREE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (02) :267-304
[10]  
Dijkgraaf R., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P60, DOI 10.1016/0920-5632(91)90123-V